质数是有限个还是无限个?

前言

这个问题等价于是否存在最大的质数。我们知道,质数(也叫素数)是只能被1和自身整除的数。对于一个数n,我们只要从2开始作为除数与n进行除法运算,判断能否整除,即可知道n是不是素数。随着数越来越大,n是质数的概率越来越低,原因很简单,因为数据太大,所以有除1和自身外的约数的几率越大。所以,会不会大到一定的程度,就没有素数了,即存在一个最大的素数。

本文的证明方法,很常见,是由伟大的数学家欧几里得完成的。欧几里得(英文:Euclid;希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊人,数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品 [百度百科]。

证明

本证明使用反证法证明。
首先,假设存在最大的质数为 P P P,那么可构造整数 M = 2 × 3 × 5 × 7 × 11 × ⋅ ⋅ ⋅ × P + 1 M=2×3×5×7×11×···×P+1 M=2×3×5×7×11××P+1
根据此表达式 M M M 显然大于 P P P,但因为 P P P 是最大素数,所以 M M M 必然是合数。
然而 M M M 对任意质数取余都是1(因为 2 × 3 × 5 × 7 × 11 × ⋅ ⋅ ⋅ × P 2×3×5×7×11×···×P 2×3×5×7×11××P对任意质数都可以整除,只剩下后面加的1)。
所以, M M M 不是合数而是素数,这与假设矛盾。所以不存在最大的素数,即素数有无数多个,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值