前言
这个问题等价于是否存在最大的质数。我们知道,质数(也叫素数)是只能被1和自身整除的数。对于一个数n,我们只要从2开始作为除数与n进行除法运算,判断能否整除,即可知道n是不是素数。随着数越来越大,n是质数的概率越来越低,原因很简单,因为数据太大,所以有除1和自身外的约数的几率越大。所以,会不会大到一定的程度,就没有素数了,即存在一个最大的素数。
本文的证明方法,很常见,是由伟大的数学家欧几里得完成的。欧几里得(英文:Euclid;希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊人,数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品 [百度百科]。
证明
本证明使用反证法证明。
首先,假设存在最大的质数为
P
P
P,那么可构造整数
M
=
2
×
3
×
5
×
7
×
11
×
⋅
⋅
⋅
×
P
+
1
M=2×3×5×7×11×···×P+1
M=2×3×5×7×11×⋅⋅⋅×P+1。
根据此表达式
M
M
M 显然大于
P
P
P,但因为
P
P
P 是最大素数,所以
M
M
M 必然是合数。
然而
M
M
M 对任意质数取余都是1(因为
2
×
3
×
5
×
7
×
11
×
⋅
⋅
⋅
×
P
2×3×5×7×11×···×P
2×3×5×7×11×⋅⋅⋅×P对任意质数都可以整除,只剩下后面加的1)。
所以,
M
M
M 不是合数而是素数,这与假设矛盾。所以不存在最大的素数,即素数有无数多个,证毕。