[paper]AdvJND:Generating Adversarial Examples with Just Noticeable Difference

AdvJND方法在保持高攻击成功率的同时,通过结合视觉模型系数(JND)来提升对抗样本的图像保真度。该算法考虑了人类视觉系统的局限,隐藏噪声并改善了对抗样本的隐蔽性。与传统方法相比,AdvJND在效率和图像质量方面表现更优,特别是在处理复杂图像纹理区域时。
摘要由CSDN通过智能技术生成

生成对抗样本有两个要求:攻击成功率和图像保真度指标。 增加扰动可以确保对抗样本的攻击成功率很高; 但是生成的对抗样本隐蔽性很差。 为了在攻击成功率和图像保真度之间取折衷,提出了一种名为AdvJND的方法,该方法在生成对抗样本时在失真函数的约束下添加了视觉模型系数,该系数用来衡量视觉上的差异。AdvJND算法生成的对抗样本产生的梯度分布与原始输入相似。该方法可以认为是一种辅助生成方法,用来改善生成算法成功率较高但图像保真度不足的问题。

生成对抗样本的问题可以看成是一个优化问题:
在这里插入图片描述
JND系数可以隐藏高斯噪声,因为JND系数大的区域是具有复杂图像纹理的区域。 此外,我们的HVS(human visual system)很难注意到这些区域中的变化,这些变化也被称为人眼的视觉盲点。 JND系数越大,阈值越高,冗余度越大,人眼的灵敏度越小,就可以掩盖更多的噪声。因此,JND系数较大的区域中的扰动不太可能被检测到。

本文有以下贡献:

  1. 第一个整合JND系数以生成对抗样本。 将人眼的视觉主观感觉作为约束中的先验信息来确定扰动的分布,并生成具有类似于原始输入的梯度分布的对抗样本。 因此,可以将原始噪声隐藏在原始输入中,从而显著改善了攻击效果。
  2. 算法的图像质量和攻击成功率接近时,使用 AdvJND 算法生成对抗样本所花费的时间比使用 L 2 L_{2} L
音乐转换器是一种能够生成具有长期结构的音乐的技术。传统上,音乐生成模型主要依赖于自回归模型,即根据前面的音符预测下一个音符。这种方法很难捕捉到音乐的长期结构,因为它只关注于当前音符与前面音符的关系。 然而,音乐转换器采用了一种全新的方法。它将音乐的生成问题转化为基于自注意力机制的序列到序列问题。自注意力机制允许模型在生成每个音符时考虑到整个音乐序列的信息,而不仅仅是前面的音符。 此外,音乐转换器还引入了一种基于位置编码和层归一化的技术,来增强模型对音乐序列的表征能力和泛化能力。位置编码在序列中为每个位置分配一个向量,以提供位置信息。而层归一化则可以确保模型的每一层都保持相似的输出分布,从而提高模型的训练稳定性和生成效果。 通过这些创新技术的运用,音乐转换器能够更好地捕捉到音乐的长期结构。它可以生成具有旋律、和声和节奏等多个音乐要素的音乐片段,并且这些片段之间能够形成完整的结构,如引言、主题、发展和回旋等。 总之,音乐转换器是一种利用自注意力机制、位置编码和层归一化等技术生成具有长期结构的音乐的方法。它的创新之处在于能够全局考虑音乐序列的信息,并能够生成具有完整结构的音乐片段。这使得音乐转换器成为一个有潜力的工具,在音乐创作和生成领域有着广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值