电商产品评论数据情感分析

本文通过Python进行电商产品评论数据的情感分析,首先提供了数据集的下载链接,接着提取评论信息,去除重复数据,然后处理评分前缀,并运用分词技术。最后,通过构建LDA主题模型深入理解评论主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集链接: https://pan.baidu.com/s/19EGElx2Ylb-DpQRrJ0F7og 提取码: tg7c
将原始数据的‘评论’一列抽取
抽取代码

#-*- coding: utf-8 -*-
import pandas as pd

inputfile = 'D:\下载\data\input\huizong.csv' #评论汇总文件
outputfile = 'D:\下载\data\output\meidi_jd.txt' #评论提取后保存路径
data = pd.read_csv(inputfile, encoding = 'utf-8')
data = data[[u'评论']][data[u'品牌'] == u'美的']
data.to_csv(outputfile, index = False, header = False, encoding = 'utf-8')

原始数据去重

#-*- coding: utf-8 -*-
import pandas as pd

inputfile = 'D:\下载\data\output\meidi_jd.txt' #评论文件
outputfile = 'D:\下载\data\output\meidi_jd_process_1.txt' #评论处理后保存路径
data = pd.read_csv(inputfile, encoding = 'utf-8', header = None)
l1 = len(data)
data = pd.DataFrame(data[0].unique())
l2 = len(data)
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值