N皇后问题

n-皇后问题

参考@竹林正在青
DFS 看 搜索顺序
递归步骤:1.边界 2.递归 3.恢复现场

第一种搜索方式(按行搜索)

/*
第一种搜索顺序
定义纵坐标为y轴,横坐标为x轴,u是每一层的状态,i是枚举每一列的状态,那么y:u, x:i;
正对角线y = x+b -> b  = y-x+n; 反对角线是 y = -x+b -> b = x+y;那么应该是dg[n+u-i],udg[u+i].

*/


#include <iostream>

using namespace std;

const int N = 20; // 对角线的数量是n*2,所以要开20

int n;
char g[N][N];
bool col[N],row[N],dg[N],udg[N];//col是行,row是列,dg是正对角线,udg是反对角线

void dfs(int u)
{
    // 1.边界 2.递归 3.恢复现场
    if(u == n)
    {
        for(int i = 0; i < n; i++) cout << g[i] << endl;
        cout << endl;
        return ;
    }
        
    // y:u, x:i
    for(int i=0;i<n;i++)
        if(!col[i] && !dg[u-i+n] && !udg[u+i])
        {
            g[u][i]='Q';
            col[i]=dg[u-i+n]=udg[u+i]=true;
            dfs(u+1);
            g[u][i]='.';
            col[i]=dg[u-i+n]=udg[u+i]=false;
        }
    
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            g[i][j] = '.';
    
    dfs(0); // 按行枚举
    
    return 0;
}

第二种搜索方式(按每一格搜索)

/*
第一种搜索顺序
定义纵坐标为y轴,横坐标为x轴,u是每一层的状态,i是枚举每一列的状态,那么y:u, x:i;
正对角线y = x+b -> b  = y-x+n; 反对角线是 y = -x+b -> b = x+y;那么应该是dg[n+u-i],udg[u+i].

*/


#include <iostream>

using namespace std;

const int N = 20; // 对角线的数量是n*2,所以要开20

int n;
char g[N][N];
bool col[N],row[N],dg[N],udg[N];//col是行,row是列,dg是正对角线,udg是反对角线

void dfs(int u)
{
    // 1.边界 2.递归 3.恢复现场
    if(u == n)
    {
        for(int i = 0; i < n; i++) cout << g[i] << endl;
        cout << endl;
        return ;
    }
        
    // y:u, x:i
    for(int i=0;i<n;i++)
        if(!col[i] && !dg[u-i+n] && !udg[u+i])
        {
            g[u][i]='Q';
            col[i]=dg[u-i+n]=udg[u+i]=true;
            dfs(u+1);
            g[u][i]='.';
            col[i]=dg[u-i+n]=udg[u+i]=false;
        }
    
}

void dfs2(int x,int y,int s)
{
    if(y==n) y=0,x++;
    if(x==n)
    {
        if(s==n)
        {
            for(int i=0;i<n;i++) cout<<g[i]<<endl;
            cout<<endl;
        }
        return ;
    }
    
    //不放
    dfs2(x,y+1,s);
    
    //放
    if(!col[x] && !row[y] && !dg[y-x+n] && !udg[y+x])
    {
        g[x][y]='Q';
        col[x]=row[y]=dg[y-x+n]=udg[y+x]=true;
        dfs2(x,y+1,s+1);
        g[x][y]='.';
        col[x]=row[y]=dg[y-x+n]=udg[y+x]=false;
    }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            g[i][j] = '.';
    
    //dfs(0); // 按行枚举
    dfs2(0,0,0); //按每一格枚举
    
    return 0;
}

N 皇后问题

注意此题坐标系

#include <iostream>
#include <vector>
#include <cstring>

using namespace std;

typedef pair<int,int> PII;

const int N = 1000 * 2;

bool col[N],row[N],dg[N],udg[N];


int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        memset(col,0,sizeof col);
        memset(row,0,sizeof row);
        memset(dg,0,sizeof dg);
        memset(udg,0,sizeof udg);
        
        int x,cnt; // x为行号,i为列号,从1开始
        vector<PII> queen;
        cin >> cnt;
        for(int i=1;i<=cnt;i++)
        {
            cin >>x;
            queen.push_back({x,i});
        }
        
        int n =cnt;
        bool flag=1;
        for(int i=0;i<queen.size();i++) // 枚举每个皇后
        {
            int x=queen[i].first,y=queen[i].second;
            //cout<<x<<" "<<y<<endl;
            
            if(!col[x] && !row[y] && !dg[y-x+n] && !udg[y+x])
            {
                col[x] = row[y] = dg[y-x+n] = udg[y+x] = true;
            }
            else
            {
                flag=0;
                break;
            }
        }
        
        if(flag) puts("YES");
        else puts("NO");
        
        
    }
    
    return 0;
}

P1219 [USACO1.5]八皇后 Checker Challenge

#include <iostream>
#include <cstdio> 
#include <vector>

using namespace std;

const int N = 30; // 对角线的数量是2倍!! 还真是! 

int n;
char g[N][N];
bool col[N],row[N],dg[N],udg[N];

int res;
vector<vector<int> > nums;
vector<int> num; 


void dfs2(int u)
{
	if(u==n){
		res++;
		nums.push_back(num);
		return ;
	}
	// u : y , i : x
	for(int i=0;i<n;i++)
	{
		if(!col[i] && !dg[u-i+n] && !udg[u+i] && g[u][i]!='.' )
		{
			col[i]=dg[u-i+n]=udg[u+i]=true;
			num.push_back(i+1);
			dfs2(u+1);
			col[i]=dg[u-i+n]=udg[u+i]=false;
			num.pop_back();
		}
	}
}

int main()
{
	cin>>n; 
		
	//dfs(0,0,0);  // 按每格枚举 
	dfs2(0); // 按每行枚举 
	
	for(int i=0;i<3;i++){
		for(int j=0;j<nums[i].size();j++) 
			cout<<nums[i][j]<<" ";
		cout<<endl;
	}
	
	cout<<res<<endl;
	
	return 0;
}

P2105 K皇后

观察到数据范围在这里插入图片描述
如果扫描整个棋盘,时间复杂度是O(nm) = 4 × 1 0 8 4×10^8 4×108,是会超时的。观察到K只有500
换种思路:先枚举每行,再枚举每个皇后,时间复杂度O(nk) < 1 0 8 10^8 108,可以通过

#include <iostream>
#include <vector>
#include <cstring>

using namespace std;

typedef pair<int,int> PII;

const int N = 20010;

int n,m,k;
vector<PII> queen;
bool row[N]; 
bool st[N]; // 每一行格子的状态

int main()
{
    cin >> n >> m >> k;
    for(int i=0;i<k;i++)
    {
        int x,y;
        cin >> x >> y;
        row[x] = true;
        queen.push_back({x,y});
    }
    
    int res=0;
    for(int i=1;i<=n;i++) // 枚举每一行
    {
        if(row[i]) continue;
        else
        {
            int sum = m;
            memset(st,0,sizeof st);
            
            for(int j=0;j<k;j++) // 枚举k个皇后
            {
                int x= queen[j].first,y=queen[j].second;
                // 竖线
                if(st[y] == false)
                {
                    st[y] = true;
                    sum --;
                }
                // 正对角线,反对角线
                int k1=y-x+i, k2 = y+x - i; 
                if(k1 >=1 && k1<=m && !st[k1]) // 符合条件
                {
                    st[k1] = true;
                    sum --;
                }
                if(k2 >=1 && k2<=m && !st[k2])
                {
                    st[k2] = true;
                    sum --;
                }
            }
            res += sum;
        }
    }
    
    cout<<res;
    
    return 0;
}

P1562 还是N皇后(二进制状态压缩)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值