机器学习_李宏毅笔记简记4【CNN】

P11 CNN

为什么CNN(卷积神经网络)适用于图像处理上(有3个属性都可以用CNN)

1. 特征 比整幅图片小

在这里插入图片描述

2. 相同的特征在不同地方重复出现

在这里插入图片描述

3. 对像素进行二次采样不会改变对象

在这里插入图片描述

CNN的架构完美解决这三个问题

在这里插入图片描述在这里插入图片描述

Convolution v.s. Fully Connected(CNN是对全连接的简化,减少参数,共享权值)

在这里插入图片描述在这里插入图片描述在这里插入图片描述

CNN in Keras(实战看看)

在这里插入图片描述在这里插入图片描述在这里插入图片描述

解释CNN工作原理(机器增强自己看到的)

在这里插入图片描述在这里插入图片描述在这里插入图片描述

CNN的更多应用

下围棋(Alpha Go does not use Max Pooling)

在这里插入图片描述在这里插入图片描述在这里插入图片描述

语音辨识(卷积核只在上下方向移动)

在这里插入图片描述

文本处理(卷积核只在左右方向移动)

在这里插入图片描述

别人优秀的笔记

LeeML-Notes

20年课程网页

【2020春季】李宏毅机器学习(全) - 视频学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值