【PyTorch官方教程】Datasets & DataLoaders(数据集和数据加载器)

DATASETS & DATALOADERS

Dataset stores the samples and their corresponding labels, and DataLoader wraps an iterable around the Dataset to enable easy access to the samples.

Dataset存储样本及其相应的标签,并DataLoader在周围包裹一个迭代器,Dataset以方便访问样本。


加载数据集

迭代和可视化数据集

为文件创建自定义数据集

准备数据以使用DataLoaders

遍历DataLoader

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用PyTorch实现LSTM训练模型并使用NSS-KDD数据集的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import pandas as pd import numpy as np # load dataset train_df = pd.read_csv('KDDTrain+.txt', header=None) test_df = pd.read_csv('KDDTest+.txt', header=None) # preprocess dataset train_df[41] = train_df[41].apply(lambda x: 0 if x == 'normal' else 1) test_df[41] = test_df[41].apply(lambda x: 0 if x == 'normal' else 1) train_x = train_df.iloc[:, :-1].values train_y = train_df.iloc[:, -1].values test_x = test_df.iloc[:, :-1].values test_y = test_df.iloc[:, -1].values # define dataset class class NSLKDDDataset(Dataset): def __init__(self, x, y): self.x = torch.tensor(x, dtype=torch.float32) self.y = torch.tensor(y, dtype=torch.float32) def __len__(self): return len(self.x) def __getitem__(self, idx): return self.x[idx], self.y[idx] # define LSTM model class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # train function def train(model, dataloader, criterion, optimizer): model.train() total_loss = 0.0 for i, (inputs, labels) in enumerate(dataloader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() return total_loss / len(dataloader) # evaluate function def evaluate(model, dataloader, criterion): model.eval() total_loss = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloader): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) total_loss += loss.item() return total_loss / len(dataloader) # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # set hyperparameters input_size = train_x.shape[1] hidden_size = 128 num_layers = 2 output_size = 1 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # create datasets and dataloaders train_dataset = NSLKDDDataset(train_x, train_y) test_dataset = NSLKDDDataset(test_x, test_y) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # create model, criterion and optimizer model = LSTMModel(input_size, hidden_size, num_layers, output_size).to(device) criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # train and evaluate model for epoch in range(num_epochs): train_loss = train(model, train_dataloader, criterion, optimizer) test_loss = evaluate(model, test_dataloader, criterion) print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}') ``` 在此示例中,我们首先加载NSS-KDD数据集,并将其预处理为包含输入和标签的NumPy数组。然后,我们定义了一个PyTorch数据集类,该类将输入和标签转换为PyTorch张量,并使其可用于PyTorchDataLoader。接下来,我们定义了LSTM模型,使用两个LSTM层和一个全连接层来预测二元分类标签。然后,我们定义了训练和评估函数,分别用于训练和评估模型。最后,我们设置了设备(CPU或GPU),定义了超参数,创建了数据集数据加载,创建了模型、损失函数和优化,然后进行训练和评估。运行此代码将在控制台中显示训练和测试损失。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值