【李宏毅2022 机器学习春】hw1_Regression(strong baseline)

本文介绍了如何通过分析特征的相关性来选择有效的数据特征,并详细列举了所选的21个特征及其对应的索引。此外,还说明了在训练模型过程中使用的正则化参数weight_decay的设定值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验记录

在这里插入图片描述

具体修改

  1. 选择特征,共计21个特征,数据特征选取参考
# 分析相关性 > 0.8, 共21个特征
feat_idx = [40, 52, 53, 54, 55, 56, 68, 69, 70, 71, 72, 84, 85, 86, 87, 88, 100, 101, 102, 103, 104]
  1. weight_decay = 1e-5

评分标准

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值