李宏毅机器学习 task3作业

该博客介绍了使用线性回归预测PM2.5值的机器学习任务,包括数据预处理、特征选择、模型训练和评估。通过热力图分析发现与PM2.5相关的特征,如PM10、NO2、SO2等,并使用线性回归模型进行预测,通过散点图展示了各特征与PM2.5的关系。
摘要由CSDN通过智能技术生成

李宏毅_Machine Learning_2019 Task 3

学习打卡内容

大作业

按照 Homework1_Introduction.txt 的要求完成本次作业
作业1:预测PM2.5的值
在这个作业中,我们将用梯度下降法 (Gradient Descent) 预测 PM2.5 的值 (Regression 回归问题)
Homework1要求:
要求 python3.5+
只能用
numpy
scipy
pandas
请用梯度下降手写线性回归
最好使用 Public Simple Baseline
对于想加载模型而并不想运行整个训练过程的人:
请上传训练代码并命名成 train.py
只要用梯度下降的代码就行了
Homework_best 要求:
要求 python3.5+
任何库都可以用
在 Kaggle 上获得你选择的更高的分
数据介绍:
本次作业使用豐原站的觀測記錄,分成 train set 跟 test set,train set 是豐原站每個月的前20天所有資料,test set則是從豐原站剩下的資料中取樣出來。
train.csv:每個月前20天每個小時的氣象資料(每小時有18種測資)。共12個月。
test.csv:從剩下的資料當中取樣出連續的10小時為一筆,前九小時的所有觀測數據當作feature,第十小時的PM2.5當作answer。一共取出240筆不重複的 test data,請根據feauure預測這240筆的PM2.5。
请完成之后参考以下资料:
Sample_code:https://ntumlta.github.io/2017fall-ml-hw1/code.html
Supplementary_Slide:https://docs.google.com/presentation/d/1WwIQAVI0RRA6tpcieynPVoYDuMmuVKGvVNF_DSKIiDI/edit#slide=id.g1ef6d808f1_2_0
答案参考answer.csv
Task 3 Implementation

方案1

‘’’
利用 Linear Regression 线性回归预测 PM2.5
该方法参考黑桃大哥的优秀作业-|vv|-
‘’’

导入必要的包 numpy、pandas以及scikit-learn归一化预处理

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler

指定相对路径

path = “./Dataset/”

利用 pands 进行读取文件操作

train = pd.read_csv(path + ‘train.csv’, engine=‘python’, encoding=‘utf-8’)
test = pd.read_csv(path + ‘test.csv’, engine=‘python’, encoding=‘gbk’)
train = train[train[‘observation’] == ‘PM2.5’]

print(train)

test = test[test[‘AMB_TEMP’] == ‘PM2.5’]

删除无关特征

train = train.drop([‘Date’, ‘stations’, ‘observation’], axis=1)
test_x = test.iloc[:, 2:]

train_x = []
train_y = []

for i in range(15):
x = train.iloc[:, i:i + 9]
# notice if we don’t set columns name, it will have different columns name in each iteration
x.columns = np.array(range(9))
y = train.iloc[:, i + 9]
y.columns = np.array(range(1))
train_x.append(x)
train_y.append(y)

review “Python for Data Analysis” concat操作

train_x and train_y are the type of Dataframe

取出 PM2.5 的数据,训练集中一共有 240 天,每天取出 15 组 含有 9 个特征 和 1 个标签的数据,共有 240159个数据

train_x = pd.concat(train_x) # (3600, 9) Dataframe类型
train_y = pd.concat(train_y)

将str数据类型转换为 numpy的 ndarray 类型

train_y = np.array(train_y, float)
test_x = np.array(test_x, float)

print(train_x.shape, train_y.shape)

进行标准缩放,即数据归一化

ss = StandardScaler()

进行数据拟合

ss.fit(train_x)

进行数据转换

train_x = ss.transform(train_x)

ss.fit(test_x)
test_x = ss.transform(test_x)

定义评估函数

计算均方误差(Mean Squared Error,MSE)

r^2 用于度量因变量的变异中 可以由自变量解释部分所占的比例 取值一般为 0~1

def r2_score(y_true, y_predict):
# 计算y_true和y_predict之间的MSE
MSE = np.sum((y_true - y_predict) ** 2) / len(y_true)
# 计算y_true和y_predict之间的R Square
return 1 - MSE / np.var(y_true)

线性回归

class LinearRegression:

def __init__(self):
    # 初始化 Linear Regression 模型
    self.coef_ = None
    self.intercept_ = None
    self._theta = None

def fit_normal(self, X_train, y_train):
    # 根据训练数据集X_train, y_train训练Linear Regression模型
    assert X_train.shape[0] == y_train.shape[0], \
        "the size of X_train must be equal to the size of y_train"

    # 对训练数据集添加 bias
    X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
    self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)

    self.intercept_ = self._theta[0]
    self.coef_ = self._theta[1:]

    return self

def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):
    '''
    :param X_train: 训练集
    :param y_train: label
    :param eta: 学习率
    :param n_iters: 迭代次数
    :return: theta 模型参数
    '''
    # 根据训练数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值