0. 作业要求
- 安装
python
或MATLAB
- 仿真三个单音信号的叠加
s(t)
的波形s ( t ) = 5 cos ( 100 π t ) + 2 cos ( 200 π t + π 4 ) + 8 sin ( 160 π t ) s(t) = 5 \cos(100 \pi t) + 2 \cos(200 \pi t + \frac{\pi}{4}) + 8 \sin(160 \pi t) s(t)=5cos(100πt)+2cos(200πt+4π)+8sin(160πt)
- 请用
fft
, 分析s(t)
的频谱特性 - 请撰写说明文档, 包括仿真基本原理、仿真模型、仿真结果与分析等
1. 仿真基本原理
- 若将原信号视为连续时间信号, 那么使用栅网产生的离散时间信号则可以视为对原信号的抽样, 栅网间隔便是抽样周期, 栅网密度便是抽样频率
- 对使用栅网生成的离散时间信号进行
DTFT
, 那么离散时间信号频谱拟合的包络线便可以视为原信号的频谱
2. 仿真模型
x [ k ] = x ( t ) ∣ t = k T x[k] = x(t)|_{t=kT} x[k]=x(t)∣t=kT
X ( e j ω ) = D T F T { x [ k ] } = ∑ k = − ∞ + ∞ x [ k ] e − j ω k X(e^{j\omega}) = DTFT\{x[k]\} = \sum_{k=-\infty}^{+\infty}x[k]e^{-j\omega k} X(ejω)=DTFT{ x[k]}=k=−∞∑+∞x[k]e−jωk
C n = 1 T 0 G 0 ( f ) C_n = \frac{1}{T_0}G_0(f) Cn=