机器学习算法---K近邻

1 超参数

k

2 k近邻的距离

在这里插入图片描述
在这里插入图片描述
欧式距离

在这里插入图片描述

3 pandas的展示

import pandas as pd
import numpy as np


dataset =  pd.read_excel('./knn案例.xls')
print(dataset)

feature = dataset.iloc[:-1,[1,2]]
print(feature)

x_unknown,y_unknown = (18,90)
feature['new_x'] = (feature[['fightnum']]-x_unknown)**2
feature['new_y'] = (feature[['kissnum']]-y_unknown)**2
feature['distance'] = (feature['new_x']+feature['new_y'])**(1/2)
print(feature)

4 sklearn

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
data_set = load_iris()
# print(data_set)

features = data_set.data
lables = data_set.target
print(features)
print(lables)

X_train, X_test, y_train, y_test = train_test_split(features,lables,test_size=0.23)

'''
 X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.33, random_state=42)
'''

knn_cls = KNeighborsClassifier()
knn_cls.fit(X_train,y_train)

y_pedict = knn_cls.predict(X_test)
print('这是原始测试集的目标值')
print(y_test)
print('预测数据')
print(y_pedict)

score = knn_cls.score(X_test,y_test)
print('得分')
print(score)

5 分类器性能

正例假例
正例真正例(TP)伪反例(FN)
假例伪正例(FP)真反例(TN)

精确率:预测结果为正例样本中真实为正例的比例(查的准)

召回率:真实为正例的样本中预测结果为正例的比例(查的全)

准确率 = 预测对的/所有 = (TP+TN)/(TP+FP+FN+TN)

精确率 = TP/(TP+FP)

召回率 = TP/(TP+FN)

调和平均数 F1
在这里插入图片描述
如果精确率和召回率差距过大的模型,没有意义再使用,

F1表示了模型的稳健性

6 K值对与模型的影响

K过小,容易收到噪声数据的影响

K过大,容易收到数量的影响

7 优缺点

优点:
简单
易于理解
容易实现
通过对K的选择可具备丢噪音数据的健壮性

缺点:
需要大量空间储存所有已知实例
算法复杂度高(需要比较所有已知实例与要分类的实例)
当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本

使用场景
适用于小数据场景,几千–几万的数据量

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值