1 超参数
k
2 k近邻的距离
欧式距离
3 pandas的展示
import pandas as pd
import numpy as np
dataset = pd.read_excel('./knn案例.xls')
print(dataset)
feature = dataset.iloc[:-1,[1,2]]
print(feature)
x_unknown,y_unknown = (18,90)
feature['new_x'] = (feature[['fightnum']]-x_unknown)**2
feature['new_y'] = (feature[['kissnum']]-y_unknown)**2
feature['distance'] = (feature['new_x']+feature['new_y'])**(1/2)
print(feature)
4 sklearn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
data_set = load_iris()
# print(data_set)
features = data_set.data
lables = data_set.target
print(features)
print(lables)
X_train, X_test, y_train, y_test = train_test_split(features,lables,test_size=0.23)
'''
X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
'''
knn_cls = KNeighborsClassifier()
knn_cls.fit(X_train,y_train)
y_pedict = knn_cls.predict(X_test)
print('这是原始测试集的目标值')
print(y_test)
print('预测数据')
print(y_pedict)
score = knn_cls.score(X_test,y_test)
print('得分')
print(score)
5 分类器性能
正例 | 假例 | |
---|---|---|
正例 | 真正例(TP) | 伪反例(FN) |
假例 | 伪正例(FP) | 真反例(TN) |
精确率:预测结果为正例样本中真实为正例的比例(查的准)
召回率:真实为正例的样本中预测结果为正例的比例(查的全)
准确率 = 预测对的/所有 = (TP+TN)/(TP+FP+FN+TN)
精确率 = TP/(TP+FP)
召回率 = TP/(TP+FN)
调和平均数 F1
如果精确率和召回率差距过大的模型,没有意义再使用,
F1表示了模型的稳健性
6 K值对与模型的影响
K过小,容易收到噪声数据的影响
K过大,容易收到数量的影响
7 优缺点
优点:
简单
易于理解
容易实现
通过对K的选择可具备丢噪音数据的健壮性
缺点:
需要大量空间储存所有已知实例
算法复杂度高(需要比较所有已知实例与要分类的实例)
当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本
使用场景
适用于小数据场景,几千–几万的数据量