一副扑克牌一共54张,平均分成2份,求这2份都有2张A的概率。

本文介绍了解决一道涉及概率的高中数学题的两种方法:作者的快速解法通过列举不同情况得出概率为0.389567147614,而公式解法通过组合数计算得出相同结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一道高中数学题,此处介绍2个解法,第1个是我喜欢用的快速解法,第2个是公式解法。

1. 我的快速解法

第1张A随便在哪份,
①如果第2张A和第1张A在同一份(概率是26/53),此时第3、4张牌必须在另一份,此时的概率为:

1 * (26 / 53) * (27 / 52) * (26 / 51) = (13 * 9) / (53 * 17)

②如果第2张A和第1张A不在同一份(概率是27/53),此时第3张牌也随便在哪一份,第4张和第3张不在同一份即可。概率为:

1 * (27 / 53) * 1 * (26 / 51) = (9 * 26) / (53 * 17)

把上述两种情况相加,得:

(13 * 9) / (53 * 17) + (9 * 26) / (53 * 17) = (13 * 27) / (53 * 17)
=0.389567147614

2. 按公式解法:

先求分母:
54张牌,分成2份,每份应该27张。
第一步:我们从54张牌取27张,作为第一份,就是C(54,27)
第二步:剩下的27张牌取27张,作为第二份,就是C(27,27)

因此分母是

C(54,27)*C(27,27)

再求分子:
一副牌有4张A,50张非A的牌。
为了保证两份都要有2张A,在挑第一份的时候,应该先在4张A里面挑2个A,50张非A的牌里挑25个非A。然后第二份就是在剩下的2个A里挑选2个,25个非A里面挑25个非A。

第一步:从4张A里挑2张A,50张非A里挑25张,C(4,2)*C(50,25)
第二步:从2张A里挑2张A,25张非A里挑25张,C(2,2)*C(25,25)

因此分子是

C(4,2)*C(50,25)*C(2,2)*C(25,25)

所以概率是:

C(4,2)*C(50,25)*C(2,2)*C(25,25) / (C(54,27)*(C27,27))
=(27*13)/(53*17)
=0.389567147614
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码到程攻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值