归并排序
归并,顾名思义是归一,合并的意思。
具体的做法大体是:将两个有序子段归并为一个长段,重复这一过程,最终就能得到一个有序序列了。
所以,纵观整个对并过程,就像是一颗完全二叉树。由二叉树的深度可以得出,整个归并排序的执行次数是以2为底n的对数。自然,这是一个对数级的操作。
扫描整个整个序列需要耗时O(n),所以,对并排序是一个时间复杂度为O(nlogn)。
归并中因为开取了辅助空间,空间复杂度为O(n+logn)。
重要的一点是,归并排序是一种稳定排序。
总之,归并排序是一种比较占内存,但效率高且稳定的排序算法。
待排序数据依然存放于顺序表中。
数据存放没有从0开始,而是选择从1开始。
代码参考于《大话数据结构》。
初始设定
#include<stdio.h>
#include<malloc.h>
#define MAXSIZE 20 //顺序表最大容量
#define N 10 //表中数据个数
顺序表结构体
typedef struct
{
int data[MAXSIZE + 1];
int len; //已存储元素个数
}Sqlist;
输出顺序表
void Show(Sqlist L)
{
int i;
for (i = 1; i < L.len; ++i)
{
printf("%d,", L.data[i]);
}
printf("%d\n", L.data[i]);
}
输入函数
void Input(Sqlist* lp)
{
int d[N] = { 9, 1, 5, 8, 3, 0, 7, 4, 6, 2 };
for (int i = 0; i < N; i++)
lp->data[i + 1] = d[i];
lp->len = N;
}
递归版归并排序
void Merge(int SR[], int TR[], int i, int m, int n)
{
//将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n]
int j, k, l;
for (j = m + 1, k = i; i <= m && j <= n; k++)
{
if (SR[i] < SR[j])
TR[k] = SR[i++];
else
TR[k] = SR[j++];
}
if (i <= m)//将剩余的SR[i..m]复制到TR
{
for (l = 0; l <= m - i; l++)
TR[k + l] = SR[i + l];
}
if (j <= n)//将剩余的SR[j..n]复制到TR
{
for (l = 0; l <= n - j; l++)
TR[k + l] = SR[j + l];
}
}
void MSort(int SR[], int TR1[], int s, int t)
{
//将SR[s..t]归并排序为TR1[s..t]
int m;
int TR2[MAXSIZE + 1];
if (s == t)
TR1[s] = SR[s];
else
{
m = (s + t) / 2;
MSort(SR, TR2, s, m);
MSort(SR, TR2, m + 1, t);
Merge(TR2, TR1, s, m, t);
}
}
void MergeSort_Recursion(Sqlist* lp)
{
MSort(lp->data, lp->data, 1, lp->len);
}
优化版归并排序
其中Merge函数同上
void MergePass(int SR[], int TR[], int s, int n)
{
//将SR[]中相邻长度为s的子序列两两归并到TR[]
int i = 1;
int j;
while (i <= n - 2 * s + 1)
{
Merge(SR, TR, i, i + s - 1, i + 2 * s - 1);
i = i + 2 * s;
}
if (i < n - s + 1)
Merge(SR, TR, i, i + s - 1, n);
else
for (j = i; j <= n; j++)
TR[j] = SR[j];
}
void MergeSort_Iteration(Sqlist* lp)
{
int* TR = (int*)malloc(lp->len * sizeof(int));
int k = 1;
while (k < lp->len)
{
MergePass(lp->data, TR, k, lp->len);
k = 2 * k;
MergePass(TR, lp->data, k, lp->len);
k = 2 * k;
}
}