题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解题思路
本题不同于之前跳台阶的题目,之前最多可以一次跳2个台阶,而本题所谓变态跳台阶,则一次最多可以跳n个台阶!!!
我们先从一般情况举例:
n = 1时,只有1种跳法,f(1) = 1
n = 2时,会有2种跳的方式,一次1阶或者2阶,既有f(2) = f(2-1) + f(2-2),(注:这里f(2-1)表示第一次跳了一个台阶还剩一个,f(2-2)表示一次直接跳了两个台阶。之后表示形式同为此意!!!)
n = 3时,会有4种跳的方式,(即一次1阶一共三次,2阶+1阶,1阶+2阶,或者一次3阶),那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3) ,因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
…后面推论类似
n = n时,会有2*f(n-1)种跳的方式,1阶、2阶…n阶,得出结论:f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n),即:f(0) + f(1) + f(2) + f(3) + … + f(n-1)
由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)
综上可以得出:f(n) = 2*f(n-1)
代码实现
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
public class jumpFloor {
//跳台阶,斐波那契数列
public int jump(int floor){//台阶数为floor
if (floor<1){
return -1;
}
if (floor<=2){
return floor;
}
int fn1=1,fn2=2;
for (int i=3;i<=floor;i++){
fn1=fn2;
fn2=2*fn2;
}
return fn2;
}
public static void main(String[] args) {
jumpFloor test=new jumpFloor();
int sum=test.jump(8);
System.out.println(sum);
}
}
总结
本题来源于面试经典教材《剑指offer》中 归属于斐波那契数列类型题目。
同许多在算法道路上不断前行的人一样,不断练习,修炼自己!
如有博客中存在的疑问或者建议,可以在下方留言一起交流,感谢各位!
最后,感谢AIAS!
觉得本博客有用的客官,可以给个赞鼓励下! 嘿嘿