算法练习篇之:变态跳台阶

算法练习篇之:变态跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路

本题不同于之前跳台阶的题目,之前最多可以一次跳2个台阶,而本题所谓变态跳台阶,则一次最多可以跳n个台阶!!!
我们先从一般情况举例:
n = 1时,只有1种跳法,f(1) = 1
n = 2时,会有2种跳的方式,一次1阶或者2阶,既有f(2) = f(2-1) + f(2-2),(注:这里f(2-1)表示第一次跳了一个台阶还剩一个,f(2-2)表示一次直接跳了两个台阶。之后表示形式同为此意!!!)
n = 3时,会有4种跳的方式,(即一次1阶一共三次,2阶+1阶,1阶+2阶,或者一次3阶),那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3) ,因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
…后面推论类似
n = n时,会有2*f(n-1)种跳的方式,1阶、2阶…n阶,得出结论:f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n),即:f(0) + f(1) + f(2) + f(3) + … + f(n-1)
由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)

综上可以得出:f(n) = 2*f(n-1)

代码实现

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

public class jumpFloor {
    //跳台阶,斐波那契数列
    public int jump(int floor){//台阶数为floor
        if (floor<1){
            return -1;
        }
        if (floor<=2){
            return floor;
        }
        int fn1=1,fn2=2;
        for (int i=3;i<=floor;i++){
            fn1=fn2;
            fn2=2*fn2;
            
        }
        return fn2;

    }
    public static void main(String[] args) {
        jumpFloor test=new jumpFloor();
        int sum=test.jump(8);
        System.out.println(sum);
    }
}



总结

本题来源于面试经典教材《剑指offer》中 归属于斐波那契数列类型题目。
同许多在算法道路上不断前行的人一样,不断练习,修炼自己!
如有博客中存在的疑问或者建议,可以在下方留言一起交流,感谢各位!
最后,感谢AIAS!

觉得本博客有用的客官,可以给个赞鼓励下! 嘿嘿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值