大家好呀!今天我想和大家聊一聊在数据安全领域里,关于恶意代码检测技术的发展,看看这些年技术大佬们都是怎么对付那些捣乱的恶意软件的。
初露锋芒:基于数据驱动和机器学习的检测
时光回溯到2013年,那时候有个叫Santos的人,他做了一件挺厉害的事儿。他采用了好多不同的机器学习算法,专门去检测恶意软件的操作码二元组。什么是操作码二元组呢?简单来说,你可以把它理解成恶意软件代码里一些有特定意义的代码组合,就像拼图里的小块一样。Santos的工作可不简单,他是首次提出基于数据驱动和机器学习算法的恶意软件智能检测方法。就好比给检测恶意软件找了一个聪明的“侦探助手”,这个助手能根据收集到的数据,自己学习怎么找出那些坏家伙,而不是像以前那样只能按照固定的规则去判断。这对于恶意代码检测来说,是一个很大的突破。
深入挖掘:基于操作码控制流图的检测
到了2014年,Cesare登场了。他发现从语义层面上看,恶意软件的操作码存在相似性。就好像一群坏蛋虽然打扮不一样,但是行事风格却有相似的地方。于是,他提出了基于操作码控制流图的恶意代码检测方法。这个方法就像是一个“放大镜”,能更深入地去观察恶意软件操作码之间的关系,从语义这个更高级的层面去识别恶意软件。通过这种方法,我们可以更精准地发现那些隐藏在代码背后搞破坏的恶意软件,让它们无所遁形。
再进一步:基于异构神经网络融合的检测
时间来到2019年,Zhang等人在恶意代码检测上又有了新动作。他们面对的是异构特征,什么是异构特征呢?就是那些不同类型、不同来源的特征。Zhang等人提出了基于异构神经网络融合的恶意软件检测方法。这就好比把一群各有所长的“小专家”集合在一起,每个“小专家”负责处理不同类型的特征,然后把它们处理的结果融合起来。这样一来,检测的准确性和泛化性都得到了进一步提升。准确性提高了,就意味着能更精准地揪出恶意软件;泛化性提高了,就表示这个方法在面对各种各样的恶意软件时,都能发挥不错的效果。
从最初的基于数据驱动和机器学习的检测,到后来深入语义层面的检测,再到结合多种特征的检测,恶意代码检测技术一直在不断发展和进步。这些技术的进步,就像给我们的信息世界筑起了一道又一道坚固的防线,让我们能更安心地使用各种电子设备,不用担心那些恶意软件的侵扰。希望未来能有更多更厉害的检测技术出现,让我们的网络环境变得更加安全!
上一篇:1.2.2.4 数据安全发展历程-数据安全检索技术:密文检索
下一篇:1.2.2.5.2 数据安全发展历程-其他数据安全技术:数字取证
推荐更多阅读内容
深入理解window.open
:用法、参数、兼容性与安全实践
深入解析原型链污染漏洞(CVE-2019-10744):从原理到实战防御
从“上移下移“到“无限套娃“:树形结构排序的魔法指南
为什么软件产品要做国产化适配?深度解析背后的必要性
黑客帝国觉醒:当网络安全数据开始“说真话“
网页复制功能的实现原理与代码解析
AI vs AI:网络安全新时代的生死竞速战
智能时代的暗流:透视2025年网络安全五大新威胁