第三章 函数的增长 3.2 标准记号与常用函数

3.2 标准记号与常用函数

一.

1.单调性

  若 m ≤ n m ≤ n mn 蕴含 f ( m ) ≤ f ( n ) f(m) ≤ f(n) f(m)f(n),则函数 f ( n ) f(n) f(n)单调递增的。类似地,若 m ≤ n m ≤ n mn 蕴含 f ( m ) ≥ f ( n ) f(m) ≥ f(n) f(m)f(n),则函数 f ( n ) f(n) f(n)单调递减的。若 m < n m < n m<n 蕴含 f ( m ) < f ( n ) f(m) < f(n) f(m)<f(n),则函数 f ( n ) f(n) f(n)严格递增的。若 m < n m < n m<n 蕴含 f ( m ) > f ( n ) f(m) > f(n) f(m)>f(n),则函数 f ( n ) f(n) f(n)严格递减的。

2.向下取整与向上取整

  对任意实数 x x x,我们用 ⌊ x ⌋ \lfloor x\rfloor x 表示小于或等于 x x x 的最大整数(读作“ x x x 的向下取整”),并用 ⌈ x ⌉ \lceil x\rceil x 表示大于或等于 x x x 的最小整数(读作“ x x x 的向上取整”)。对所有实数 x x x x − 1 < ⌊ x ⌋ ≤ x ≤ ⌈ x ⌉ < x + 1 x - 1<\lfloor x \rfloor≤x≤\lceil x \rceil<x+1 x1<xxx<x+1  对任意整数 n n n ⌈ n 2 ⌉ + ⌊ n 2 ⌋ = n \lceil \frac{n}{2} \rceil+\lfloor \frac{n}{2}\rfloor=n 2n+2n=n  对任意实数 x ≥ 0 x ≥ 0 x0 和整数 a , b > 0 a, b> 0 a,b0 ⌈ ⌈ x a ⌉ b ⌉ = ⌈ x a b ⌉ \lceil \frac{\lceil\frac{x}{a}\rceil}{b}\rceil=\lceil\frac{x}{ab}\rceil bax=abx ⌊ ⌊ x a ⌋ b ⌋ = ⌊ x a b ⌋ \lfloor \frac{\lfloor\frac{x}{a}\rfloor}{b}\rfloor=\lfloor\frac{x}{ab}\rfloor bax=abx ⌈ a b ⌉ ≤ a + ( b − 1 ) b \lceil\frac{a}{b}\rceil≤\frac{a+(b-1)}{b} baba+(b1) ⌊ a b ⌋ ≥ a + ( b − 1 ) b \lfloor\frac{a}{b}\rfloor≥\frac{a+(b-1)}{b} baba+(b1)
  向下取整函数 f ( x ) = ⌊ x ⌋ f(x) = \lfloor x\rfloor f(x)=x 是单调递增的,向上取整函数 f ( x ) = ⌈ x ⌉ f(x) = \lceil x\rceil f(x)=x 是单调递增的。

3.模运算

  对任意整数 a a a 和任意正整数 n n n, a   m o d   n = a − n ⌊ a n ⌋ a\bmod n=a-n\lfloor\frac{a}{n}\rfloor amodn=anna  结果有 0 ≤ a   m o d   n < n 0≤a\bmod n<n 0amodn<n

4.多项式

  给定一个非负整数 d d d n n n d d d 次多项式为具有以下形式的一个函数 p ( n ) p(n) p(n) p ( n ) = ∑ i = 0 d a i n i p(n)=\sum_{i=0}^{d}a_in^i p(n)=i=0daini  其中常量 a 0 , a 1 , . . . , a d a_0,a_1, ... , a_d a0a1,...,ad 是多项式的系数 a d ≠ 0 a_d≠ 0 ad=0。一个多项式为渐近正的当且仅当 a d > 0 a_d > 0 ad>0。对于一个 d d d 次渐近正的多项式 p ( n ) p(n) p(n),有 p ( n ) = Θ ( n d ) p(n) = Θ(n^d) p(n)=Θ(nd)
  若对某个常量 k k k,有 f ( n ) = O ( n k ) f(n) = O(n^k) f(n)=O(nk),则称函数 f ( n ) f(n) f(n)多项式有界的。

5.指数

  对所有 n n n a ≥ 1 a ≥ 1 a1,函数 a n a^n an 关于 n n n 单调递增。方便时,我们假定 0 0 = 1 0^0 = 1 00=1
  对所有使得 a > 1 a > 1 a>1 的实常量 a a a b b b,有 lim ⁡ n → ∞ n b a n = 0 \lim_{n\rightarrow \infty}\frac{n^b}{a^n}=0 nlimannb=0  据此可得 n b = o ( a n ) n^b=o(a^n) nb=o(an)  因此,任意底大于 1 1 1 的指数函数比任意多项式函数增长得快。
  当 ∣ x ∣ ≤ 1 |x| ≤ 1 x1 时,我们有近似估计 1 + x ≤ e x ≤ 1 + x + x 2 1+x≤e^x≤1+x+x^2 1+xex1+x+x2  当 x → 0 x \rightarrow 0 x0 时,用 1 + x 1 + x 1+x 作为 e x e^x ex的近似是相当好的: e x = 1 + x + Θ ( x 2 ) e^x=1+x+\Theta(x^2) ex=1+x+Θ(x2)  对所有 x x x,我么有: lim ⁡ n → ∞ ( 1 + x n ) n = e x \lim_{n\rightarrow\infty}(1+\frac{x}{n})^n=e^x nlim(1+nx)n=ex

6.对数

  对数函数只适用于公式中的下一项。
  对 x > − 1 x > -1 x>1,还有下面的不等式: x 1 + x ≤ l n ( 1 + x ) ≤ x \frac{x}{1+x}≤ln(1+x)≤x 1+xxln(1+x)x  其中仅对 x = 0 x = 0 x=0 等号成立。
  若对某个常量 k k k f ( n ) = O ( lg ⁡ k n ) f(n) = O(\lg{k^ n}) f(n)=O(lgkn),则称函数 f ( n ) f(n) f(n)多对数有界的。 lim ⁡ n → ∞ lg ⁡ b n ( 2 a ) lg ⁡ n = lim ⁡ n → ∞ lg ⁡ b n n a = 0 \lim_{n\rightarrow\infty}\frac{\lg^bn}{(2^a)^{\lg n}}=\lim_{n\rightarrow\infty}\frac{\lg^bn}{n^a}=0 nlim(2a)lgnlgbn=nlimnalgbn=0  对任意常量 a > 0 a > 0 a>0 lg ⁡ b n = o ( n a ) \lg^b n = o(n^a) lgbn=o(na)  因此,任意正的多项式函数都比任意多对数函数增长得快。

7.阶乘

  阶乘函数的一个弱上界是 n ! ≤ n n n!≤n^n n!nn  斯特林(Stirling)近似公式如下: n ! = 2 π n ( n e ) n ( 1 + Θ ( 1 n ) ) n!=\sqrt{2\pi n}(\frac{n}{e})^n(1+\Theta(\frac{1}{n})) n!=2πn (en)n(1+Θ(n1))  给出了一个更紧确的上界和下界。
  对所有 n ≥ 1 n ≥ 1 n1,下面的等式也成立: n ! = 2 π n ( n e ) n e α n n!=\sqrt{2\pi n}(\frac{n}{e})^ne^{\alpha_n} n!=2πn (en)neαn  其中: 1 12 n + 1 < α n < 1 12 n \frac{1}{12n+1}<\alpha_n<\frac{1}{12n} 12n+11<αn<12n1

8.多重函数

f ( i ) ( n ) = { n , 若 i = 0 f ( f ( i − 1 ) ( n ) ) , 若 i > 0 f^{(i)}(n)= \begin{cases} n, & \text {若 i = 0} \\ f(f^{(i-1)}(n)), & \text{若 i > 0} \end{cases} f(i)(n)={n,f(f(i1)(n)), i = 0 i > 0

9.多重对数函数

  我们使用记号 lg ⁡ ∗ n \lg^* n lgn(读作“ log 星 n ”)来表示多重对数,下面会给出它的定义。假设 lg ⁡ ( i ) n \lg^{(i)} n lg(i)n 定义如上,其中 f ( n ) = lg ⁡ n f(n) = \lg n f(n)=lgn。定义多重对数函数为 l g ∗ n = m i n { i ≥ 0 : l g ( i ) ≤ 1 } lg^*n=min\{i≥0:lg^{(i)}≤1\} lgn=min{i0:lg(i)1}  因为在可探测的宇宙中原子的数目估计约为 1 0 8 0 10^80 1080,远远小于 2 65536 2^{65536} 265536,所以我们很少遇到一个使 lg ⁡ ∗ n > 5 \lg^*n > 5 lgn>5的输入规模 n n n

10.斐波那契数

  使用下面的递归式来定义斐波那契数
F 0 = 0 F_0=0 F0=0 F 1 = 1 F_1=1 F1=1 F i = F i − 1 + F i − 2 , i ≥ 2 F_i=F_{i-1}+F_{i-2},i≥2 Fi=Fi1+Fi2i2  斐波那契数与黄金分割率 ϕ \phi ϕ 及其共轭数 ϕ ^ \hat\phi ϕ^ 有关。他们是下列方程的两个根: x 2 = x + 1 x^2=x+1 x2=x+1 ϕ = 1 + 5 2 = 1.61803... \phi=\frac{1+\sqrt{5}}{2}=1.61803... ϕ=21+5 =1.61803... ϕ ^ = 1 − 5 2 = − 0.61803... \hat\phi=\frac{1-\sqrt{5}}{2}=-0.61803... ϕ^=215 =0.61803...  特别地,我们有 F i = ϕ i − ϕ ^ i 5 F_i=\frac{\phi^i-\hat\phi^i}{\sqrt5} Fi=5 ϕiϕ^i  因为 ∣ ϕ ^ ∣ < 1 |\hat\phi| < 1 ϕ^<1,所以有 ∣ ϕ ^ i ∣ 5 < 1 5 < 1 2 \frac{|\hat\phi^i|}{\sqrt5}<\frac{1}{\sqrt5}<\frac{1}{2} 5 ϕ^i<5 1<21  这蕴含着 F i = ⌊ ϕ i 5 + 1 2 ⌋ F_i=\lfloor\frac{\phi^i}{\sqrt{5}}+\frac{1}{2}\rfloor Fi=5 ϕi+21  这就是说第 i i i个斐波那契数 F i F_i Fi 等于 φ i 5 \frac{φ^i}{\sqrt 5} 5 φi 舍入到最近的整数。因此,斐波那契数以指数形式增长。

二.

3.2-1

  证明:若 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是单调递增的函数,则函数 f ( n ) + g ( n ) f(n) + g(n) f(n)+g(n) f ( g ( n ) ) f(g(n)) f(g(n)) 也是单调递增的,此外,若 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是非负的,则 f ( n ) ⋅ g ( n ) f(n)\cdot g(n) f(n)g(n) 是单调递增的。

  证明:对任意 n 1 、 n 2 ∈ N n_1、n_2 \in N n1n2N f ( n 1 ) < f ( n 2 ) f(n_1) < f(n_2) f(n1)<f(n2) g ( n 1 ) < g ( n 2 ) g(n_1) < g(n_2) g(n1)<g(n2),则 f ( n 1 ) + g ( n 1 ) < f ( n 2 ) + g ( n 2 ) f(n_1)+g(n_1)<f(n_2)+g(n_2) f(n1)+g(n1)<f(n2)+g(n2) f ( g ( n 1 ) ) < f ( g ( n 2 ) ) f(g(n_1))<f(g(n_2)) f(g(n1))<f(g(n2))     故函数 f ( n ) + g ( n ) f(n) + g(n) f(n)+g(n) f ( g ( n ) ) f(g(n)) f(g(n)) 单调递增。
     若 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是非负的,则 f ( n 1 ) ⋅ g ( n 1 ) < f ( n 2 ) ⋅ g ( n 2 ) f(n_1)\cdot g(n_1) < f(n_2) \cdot g(n_2) f(n1)g(n1)<f(n2)g(n2)     故 f ( n ) ⋅ g ( n ) f(n) · g(n) f(n)g(n) 是单调递增的。

3.2-2

  证明等式 (3.16) a log ⁡ b c = c log ⁡ b a a^{\log _{b} c}=c^{\log_{b}a} alogbc=clogba

  证明:要证 a log ⁡ b c = c log ⁡ b a a^{\log _{b} c}=c^{\log_{b}a} alogbc=clogba     即证 lg ⁡ a ⋅ log ⁡ b c = lg ⁡ c ⋅ log ⁡ b a \lg a\cdot{\log _{b} c}=\lg c\cdot{\log_{b}a} lgalogbc=lgclogba     即证 lg ⁡ a ⋅ lg ⁡ c lg ⁡ b = lg ⁡ c ⋅ lg ⁡ a lg ⁡ b \lg a\cdot\frac{\lg c}{\lg b}=\lg c\cdot\frac{\lg a}{\lg b} lgalgblgc=lgclgblga     证毕。

3.2-3

  证明等式(3.19) lg ⁡ ( n ! ) = Θ ( n lg ⁡ n ) \lg(n!)=\Theta(n\lg n) lg(n!)=Θ(nlgn)  并证明 n ! = ω ( 2 n ) n! = ω(2^n) n!=ω(2n) n ! = o ( n n ) n! = o(n^n) n!=o(nn)

  证明:取 c 1 = 1 c_1 = 1 c1=1 c 2 = 1 2 c_2 = \frac{1}{2} c2=21,则由于 lg ⁡ ( n ! ) = ∑ i = 1 n lg ⁡ i ≤ n lg ⁡ n \lg(n!)=\sum_{i=1}^{n}\lg i≤n\lg n lg(n!)=i=1nlginlgn     当 n n n 足够大时, lg ⁡ ( n ! ) = ∑ i = 1 ⌊ n 2 ⌋ lg ⁡ i + ∑ i = ⌊ n 2 ⌋ + 1 n lg ⁡ i ≥ n 2 lg ⁡ n 2 ≥ n 4 lg ⁡ n \lg(n!)=\sum_{i=1}^{\lfloor\frac{n}{2}\rfloor}\lg i+\sum_{i = \lfloor\frac{n}{2}\rfloor+1}^{n}\lg i≥\frac{n}{2}\lg\frac{n}{2}≥\frac{n}{4}\lg n lg(n!)=i=12nlgi+i=2n+1nlgi2nlg2n4nlgn     故而 lg ⁡ ( n ! ) = Θ ( n lg ⁡ n ) \lg(n!)=\Theta(n\lg n) lg(n!)=Θ(nlgn)     取 c = 1 2 c = \frac{1}{2} c=21,对任意 n ∈ N n \in N nN,则 n ! ≥ 1 2 ⋅ 2 n > 0 n! ≥ \frac{1}{2}\cdot 2^n>0 n!212n>0     故而 n ! = ω ( 2 n ) n! = ω(2^n) n!=ω(2n)     取 c = 1 c = 1 c=1,对任意 n ∈ N n \in N nN,则 n ! ≤ n n n! ≤ n^n n!nn     故而 n ! = o ( n n ) n! = o(n^n) n!=o(nn)

*3.2-4

  函数 ⌈ lg ⁡ n ⌉ ! ⌈\lg n⌉! lgn! 多项式有界吗?函数 ⌈ lg ⁡ lg ⁡ n ⌉ ! ⌈\lg \lg n⌉! lglgn! 多项式有界吗?

  解:设 ⌈ lg ⁡ n ⌉ = m \lceil\lg n\rceil=m lgn=m    故 m ! = 2 π m ( m e ) m e 2 m > ( m e ) m e 2 m = ( m e ) m = e m ( ln ⁡ m + 1 ) > n ln ⁡ m + 1 > n ln ⁡ ln ⁡ m m!=\sqrt{2\pi m}(\frac{m}{e})^me^{2m}>(\frac{m}{e})^me^{2m}=(me)^m=e^{m(\ln m+1)}>n^{\ln m+1}>n^{\ln\ln m} m!=2πm (em)me2m>(em)me2m=(me)m=em(lnm+1)>nlnm+1>nlnlnm    从而函数 ⌈ lg ⁡ n ⌉ ! ⌈\lg n⌉! lgn! 不是多项式有界的。
     设 ⌈ lg ⁡ lg ⁡ n ⌉ = m \lceil\lg\lg n\rceil=m lglgn=m m ! < m m < ( 2 m ) m = 2 m 2 < 2 2 m − 1 m! <m^m<(2^m)^m=2^{m^2}<2^{2^{m-1}} m!<mm<(2m)m=2m2<22m1    并且 lg ⁡ lg ⁡ n ≥ m − 1 , n ≥ 2 2 m − 1 \lg\lg n≥m-1,n≥2^{2^{m-1}} lglgnm1,n22m1 ⌈ lg ⁡ lg ⁡ n ⌉ < 2 2 m − 1 ≤ n \lceil\lg\lg n\rceil<2^{2^{m-1}}≤n lglgn<22m1n    故 ⌈ lg ⁡ lg ⁡ n ⌉ ! ⌈\lg \lg n⌉! lglgn! 是多项式有界。

*3.2-5

  如下两个函数中,哪一个渐近更大些: lg ⁡ ( lg ⁡ ∗ n ) \lg(\lg^* n) lg(lgn) 还是 lg ⁡ ∗ ( lg ⁡ n ) \lg^* (\lg n) lg(lgn)

  证明:后者大一些(套的层数少一些)。

3.2-6

  证明:黄金分割率 ϕ \phi ϕ 及其共轭数 ϕ ^ \hat\phi ϕ^ 都满足方程 x 2 = x + 1 x^2=x+1 x2=x+1

  证明:代入 ϕ 2 = ( 5 + 1 2 ) 2 = 3 + 5 2 = ϕ + 1 \phi^2=(\frac{\sqrt 5+1}{2})^2=\frac{3+\sqrt 5}{2}=\phi+1 ϕ2=(25 +1)2=23+5 =ϕ+1 ϕ ^ 2 = ( 5 − 1 2 ) 2 = 3 − 5 2 = ϕ ^ + 1 \hat\phi^2=(\frac{\sqrt 5-1}{2})^2=\frac{3-\sqrt 5}{2}=\hat\phi+1 ϕ^2=(25 1)2=235 =ϕ^+1

3.2-7

  用归纳法证明:第 i i i 个斐波那契数满足等式 F i = ϕ i − ϕ ^ i 5 F_i=\frac{\phi^i-\hat\phi^i}{\sqrt5} Fi=5 ϕiϕ^i  其中 ϕ \phi ϕ 是黄金分割率且 ϕ ^ \hat\phi ϕ^ 是共轭数。

  证明:使用数学归纳法,当 i = 0 i = 0 i=0 时, F 0 = ( 1 + 5 2 ) 0 − ( 1 − 5 2 ) 0 5 = 0 F_0 =\frac{(\frac{1+\sqrt 5}{2})^0-(\frac{1-\sqrt 5}{2})^0}{\sqrt 5}=0 F0=5 (21+5 )0(215 )0=0     当 i < n i < n i<n 时, F i = ( 1 + 5 2 ) i − ( 1 − 5 2 ) i 5 F_i =\frac{(\frac{1+\sqrt 5}{2})^i-(\frac{1-\sqrt 5}{2})^i}{\sqrt 5} Fi=5 (21+5 )i(215 )i     从而当 i = n i = n i=n F n = F n − 1 + F n − 2 = ( 1 + 5 2 ) n − 1 − ( 1 − 5 2 ) n − 1 5 + ( 1 + 5 2 ) n − 2 − ( 1 − 5 2 ) n − 2 5 = ( 1 + 5 2 ) n − 2 ⋅ 3 + 5 2 − ( 1 − 5 2 ) n − 1 ⋅ 3 − 5 2 5 = ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 5 \begin{aligned} F_n & = F_{n-1}+F_{n-2}\\ &=\frac{(\frac{1+\sqrt 5}{2})^{n-1}-(\frac{1-\sqrt 5}{2})^{n-1}}{\sqrt 5}+\frac{(\frac{1+\sqrt 5}{2})^{n-2}-(\frac{1-\sqrt 5}{2})^{n-2}}{\sqrt 5}\\ &=\frac{(\frac{1+\sqrt 5}{2})^{n-2}\cdot\frac{3+\sqrt 5}{2}-(\frac{1-\sqrt 5}{2})^{n-1}\cdot\frac{3-\sqrt 5}{2}}{\sqrt 5}\\ & = \frac{(\frac{1+\sqrt 5}{2})^n-(\frac{1-\sqrt 5}{2})^n}{\sqrt 5} \end{aligned} Fn=Fn1+Fn2=5 (21+5 )n1(215 )n1+5 (21+5 )n2(215 )n2=5 (21+5 )n223+5 (215 )n1235 =5 (21+5 )n(215 )n     综上所述, F i = ϕ i − ϕ ^ i 5 F_i=\frac{\phi^i-\hat\phi^i}{\sqrt5} Fi=5 ϕiϕ^i

3.2-8

  证明: k ln ⁡ k = Θ ( n ) k\ln k = Θ(n) klnk=Θ(n) 蕴含着 k = Θ ( n ln ⁡ n ) k = Θ(\frac{n}{\ln n}) k=Θ(lnnn)

  证明:由于 k l n k = Θ ( n ) kln k = Θ(n) klnk=Θ(n),则 n = Θ ( k l n k ) n = Θ(kln k) n=Θ(klnk),要证 k = Θ ( n ln ⁡ n ) k = Θ(\frac{n}{\ln n}) k=Θ(lnnn)即证 n ln ⁡ n = Θ ( k ) \frac{n}{\ln n} = Θ(k) lnnn=Θ(k)。代入条件: n ln ⁡ n = Θ ( k ln ⁡ k ln ⁡ ( k ln ⁡ k ) ) = Θ ( k l n k l n k ) = Θ ( k ) \frac{n}{\ln n}=\Theta(\frac{k\ln k}{\ln (k\ln k)})=\Theta(\frac{klnk}{lnk})=\Theta(k) lnnn=Θ(ln(klnk)klnk)=Θ(lnkklnk)=Θ(k)     即: n ln ⁡ n = Θ ( k ) \frac{n}{\ln n} = \Theta(k) lnnn=Θ(k)

3-1

  (多项式的渐近行为)假设 p ( n ) = ∑ i = 0 d a i n i p(n) = \sum_{i=0}^da_in^i p(n)=i=0daini  是一个关于 n n n d d d 次多项式,其中 a d > 0 a_d > 0 ad>0 k k k 是一个常量。使用渐近记号的定义来证明下面的性质。
  a. k ≥ d k ≥ d kd,则 p ( n ) = O ( n k ) p(n) = O(n^k) p(n)=O(nk)
  b. k ≤ d k ≤ d kd,则 p ( n ) = Ω ( n k ) p(n) = Ω(n^k) p(n)=Ω(nk)
  c. k = d k = d k=d,则 p ( n ) = Θ ( n k ) p(n) = Θ(n^k) p(n)=Θ(nk)
  d. k > d k > d k>d,则 p ( n ) = o ( n k ) p(n) = o(n^k) p(n)=o(nk)
  e. k < d k < d k<d,则 p ( n ) = ω ( n k ) p(n) = ω(n^k) p(n)=ω(nk)

  证明:
     a. a m a x = { a 1 , a 2 , . . . , a d } ≥ a d > 0 a_{max} = \{a_1, a_2,...,a_d\} ≥a_d>0 amax={a1,a2,...,ad}ad>0,取 c = d a m a x , n 0 = 1 c=da_{max},n_0=1 c=damax,n0=1,则有 p ( n ) = ∑ i = 0 d a i n i ≤ ∑ i = 0 d a m a x n i ≤ d a m a x n d = c n d ≤ c n k p(n)=\sum_{i=0}^{d}a_in^i≤\sum_{i=0}^{d}a_{max}n^i≤da_{max}n^d=cn^d≤cn^k p(n)=i=0dainii=0damaxnidamaxnd=cndcnk      从而 p ( n ) = O ( n k ) p(n) = O(n^k) p(n)=O(nk) 成立
     b. c = 1 2 a d c=\frac{1}{2}a_d c=21ad,对 ∃ n 0 > 0 , s . t . ∀ n > n 0 \exists n_0 >0,s.t.\forall n >n_0 n0>0,s.t.n>n0,均有 1 2 a d n d + ∑ i = 0 d − 1 a i n i > 0 \frac{1}{2}a_dn^d+\sum_{i=0}^{d-1}a_in^i>0 21adnd+i=0d1aini>0,从而 c n k ≤ c n d = 1 2 a d n d ≤ 1 2 a d n d + 1 2 a d n d + ∑ i = 0 d − 1 a i n i = p ( n ) = ∑ i = 0 d a i n i cn^k≤cn^d=\frac{1}{2}a_dn^d≤\frac{1}{2}a_dn^d+\frac{1}{2}a_dn^d+\sum_{i=0}^{d-1}a^in^i=p(n)=\sum_{i=0}^{d}a_in^i cnkcnd=21adnd21adnd+21adnd+i=0d1aini=p(n)=i=0daini      从而 p ( n ) = Ω ( n k ) p(n) = \Omega(n^k) p(n)=Ω(nk)成立
     c. k = d k = d k=d 时,由 a.b. 及定理 3.1 知, p ( n ) = Θ ( n k ) p(n)=\Theta(n^k) p(n)=Θ(nk)成立
     d. k < d k<d k<d时,设 a m a x = { a 1 , a 2 , . . . , a d } ≥ a d > 0 a_{max} = \{a_1, a_2,...,a_d\} ≥a_d>0 amax={a1,a2,...,ad}ad>0,取 c = d a m a x , n 0 = 1 c=da_{max},n_0=1 c=damax,n0=1,则有 p ( n ) = ∑ i = 0 d a i n i ≤ ∑ i = 0 d a m a x n i ≤ d a m a x n d = c n d < c n k p(n)=\sum_{i=0}^{d}a_in^i≤\sum_{i=0}^{d}a_{max}n^i≤da_{max}n^d=cn^d<cn^k p(n)=i=0dainii=0damaxnidamaxnd=cnd<cnk      从而 p ( n ) = o ( n k ) p(n) = o(n^k) p(n)=o(nk) 成立
     e. c = 1 2 a d c=\frac{1}{2}a_d c=21ad,对 ∃ n 0 > 0 , s . t . ∀ n > n 0 \exists n_0 >0,s.t.\forall n >n_0 n0>0,s.t.n>n0,均有 1 2 a d n d + ∑ i = 0 d − 1 a i n i > 0 \frac{1}{2}a_dn^d+\sum_{i=0}^{d-1}a_in^i>0 21adnd+i=0d1aini>0,从而 c n k < c n d = 1 2 a d n d ≤ 1 2 a d n d + 1 2 a d n d + ∑ i = 0 d − 1 a i n i = p ( n ) = ∑ i = 0 d a i n i cn^k<cn^d=\frac{1}{2}a_dn^d≤\frac{1}{2}a_dn^d+\frac{1}{2}a_dn^d+\sum_{i=0}^{d-1}a^in^i=p(n)=\sum_{i=0}^{d}a_in^i cnk<cnd=21adnd21adnd+21adnd+i=0d1aini=p(n)=i=0daini      从而 p ( n ) = ω ( n k ) p(n) = \omega(n^k) p(n)=ω(nk)成立

3-2

  (相对渐近增长)为下表中的每对表达式 ( A , B ) (A, B) (A,B) 指出 A A A 是否是 B B B O O O o o o Ω Ω Ω ω ω ω Θ Θ Θ。假设 k ≥ 1 k ≥ 1 k1 ε > 0 ε > 0 ε>0 c > 1 c > 1 c>1 均为常量。回答应该以表格的形式,将“是”或“否”写在每个空格中。

ABOoΩωΘ
a. lg ⁡ k n \lg^kn lgkn n ε n^ε nε
b. n k n^k nk c n c^n cn
c. n \sqrt n n n sin ⁡ n n^{\sin n} nsinn
d. 2 n 2^n 2n 2 n 2 2^{\frac{n}{2}} 22n
e. n lg ⁡ c n^{\lg c} nlgc c lg ⁡ n c^{\lg n} clgn
f. lg ⁡ ( n ! ) \lg(n!) lg(n!) lg ⁡ ( n n ) \lg(n^n) lg(nn)

3-3

  (根据渐近增长率排序)
  a. 根据增长的阶来排序下面的函数,即求出满足 g 1 = Ω ( g 2 ) g_1 = Ω(g_2) g1=Ω(g2) g 2 = Ω ( g 3 ) g_2 = Ω(g_3) g2=Ω(g3), … , g 29 = Ω ( g 30 ) g_{29} = Ω(g_{30}) g29=Ω(g30) 的函数的一种排列 g 1 , g 2 , . . . , g 30 g_1,g_2,...,g_{30} g1g2...g30。把你的表划分成等价类,使得函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 在相同类中当且仅当 f ( n ) = Θ ( g ( n ) ) f(n) = Θ(g(n)) f(n)=Θ(g(n))

lg ⁡ ( lg ⁡ ∗ n ) \lg(\lg ^* n) lg(lgn) 2 lg ⁡ ∗ n 2^{\lg ^*n} 2lgn ( 2 ) lg ⁡ n (\sqrt2)^{\lg n} (2 )lgn n 2 n^2 n2 n ! n! n! ( lg ⁡ n ) ! (\lg n)! (lgn)!
( 3 2 ) n (\frac{3}{2})^n (23)n n 3 n^3 n3 lg ⁡ 2 n \lg^2 n lg2n lg ⁡ ( n ! ) \lg(n!) lg(n!) 2 2 n 2^{2^n} 22n n 1 lg ⁡ n n^{\frac{1}{\lg n}} nlgn1
ln ⁡ ln ⁡ n \ln\ln n lnlnn lg ⁡ ∗ n \lg^* n lgn n ∗ 2 n n * 2^n n2n n lg ⁡ lg ⁡ n n ^{\lg\lg n} nlglgn ln ⁡ n \ln n lnn 1 1 1
2 lg ⁡ n 2^{\lg n} 2lgn ( lg ⁡ n ) lg ⁡ n (\lg n)^{\lg n} (lgn)lgn e n e^n en 4 lg ⁡ n 4^{\lg n} 4lgn ( n + 1 ) ! (n + 1)! (n+1)! lg ⁡ n \sqrt{\lg n} lgn
lg ⁡ ∗ ( lg ⁡ n ) \lg*(\lg n) lg(lgn) 2 2 lg ⁡ n 2^{\sqrt{2\lg n}} 22lgn n n n 2 n 2^n 2n n lg ⁡ n n\lg n nlgn 2 2 n + 1 2^{2^{n+1}} 22n+1

  b. 给出非负函数 f ( n ) f(n) f(n) 的一个例子,使得对所有在 (a) 部分中的的函数 g i ( n ) , f ( n ) g_i(n),f(n) gi(n)f(n) 既不是 O ( g i ( n ) ) O(g_i(n)) O(gi(n)) 也不是 Ω ( g i ( n ) ) Ω(g_i(n)) Ω(gi(n))

  证明:a. 先进行化简, ( 2 ) lg ⁡ n = n (\sqrt2)^{\lg n}=\sqrt n (2 )lgn=n lg ⁡ ( n ! ) = Θ ( n lg ⁡ n ) \lg(n!)=\Theta(n\lg n) lg(n!)=Θ(nlgn) 2 lg ⁡ n = n 2^{\lg n}=n 2lgn=n 4 lg ⁡ n = n 2 4^{\lg n}=n^2 4lgn=n2 2 2 lg ⁡ n = n 2 2^{2\lg n}=n^2 22lgn=n2, 从而给出这样的排列:
2 2 n + 1 , 2 2 n , ( n + 1 ) ! , n ! , e n , n ∗ 2 n , 2 n , ( 3 2 ) n , ( lg ⁡ n ) lg ⁡ n 、 n lg ⁡ lg ⁡ n , ( lg ⁡ n ) ! , n 3 , n 2 、 4 lg ⁡ n , lg ⁡ ( n ! ) , n lg ⁡ n , n 、 2 lg ⁡ n , ( 2 ) lg ⁡ n , 2 2 lg ⁡ n , lg ⁡ 2 n , ln ⁡ n , lg ⁡ n , ln ⁡ ln ⁡ n , 2 lg ⁡ ∗ n , lg ⁡ ∗ n 、 lg ⁡ ∗ ( lg ⁡ n ) , lg ⁡ ( lg ⁡ ∗ n ) , n 1 lg ⁡ n 、 1 2^{2^{n+1}},2^{2^n},(n+1)!,n!,e^n,n*2^n,2^n,\\(\frac{3}{2})^n,(\lg n)^{\lg n}、n^{\lg\lg n},(\lg n)!,n^3,n^2、4^{\lg n},\lg(n!),n\lg n,n、2^{\lg n},\\(\sqrt2)^{\lg n},2^{\sqrt{2\lg n}},\lg^2n,\ln n,\\\sqrt{\lg n},\ln\ln n,2^{\lg^*n},\lg^*n、\lg^*(\lg n),\lg(\lg^*n),n^{\frac{1}{\lg n}}、1 22n+1,22n,(n+1)!,n!,en,n2n,2n,(23)n,(lgn)lgnnlglgn,(lgn)!,n3,n24lgn,lg(n!),nlgn,n2lgn,(2 )lgn,22lgn ,lg2n,lnn,lgn ,lnlnn,2lgn,lgnlg(lgn),lg(lgn),nlgn11
     b. f ( n ) = n sin ⁡ n f(n) = n^{\sin n} f(n)=nsinn

3-4

  (渐近记号的性质)假设 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 为渐近正函数。证明或者反驳下面的每一个猜测。
  a. f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)) 蕴含 g ( n ) = O ( f ( n ) ) g(n) = O(f(n)) g(n)=O(f(n))
  b. f ( n ) + g ( n ) = Θ ( min ⁡ ( f ( n ) , g ( n ) ) ) f(n) + g(n) = Θ(\min(f(n), g(n))) f(n)+g(n)=Θ(min(f(n),g(n)))
  c. f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)) 蕴含 lg ⁡ ( f ( n ) ) = O ( lg ⁡ ( g ( n ) ) ) \lg(f(n)) = O(\lg(g(n))) lg(f(n))=O(lg(g(n))),其中对所有足够大的 n n n ,有 lg ⁡ ( g ( n ) ) ) ≥ 1 \lg(g(n))) ≥1 lg(g(n)))1 f ( n ) ≥ 1 f(n) ≥ 1 f(n)1
  d. f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)) 蕴含 2 f ( n ) = O ( 2 g ( n ) ) 2^{f(n)} = O(2^{g(n)}) 2f(n)=O(2g(n))
  e. f ( n ) = O ( ( f ( n ) ) 2 ) f(n) = O((f(n))^2) f(n)=O((f(n))2)
  f. f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)) 蕴含 g ( n ) = Ω ( f ( n ) ) g(n) = Ω(f(n)) g(n)=Ω(f(n))
  g. f ( n ) = Θ ( f ( n / 2 ) ) f(n) = Θ(f(n/2)) f(n)=Θ(f(n/2))
  h. f ( n ) + o ( f ( n ) ) = Θ ( f ( n ) ) f(n) + o(f(n)) = Θ(f(n)) f(n)+o(f(n))=Θ(f(n))

  解:a. 假设不成立。如 f ( n ) = n , g ( n ) = n 2 f(n) = n,g(n)=n^2 f(n)=n,g(n)=n2
    b. 假设不成立。 f ( n ) + g ( n ) = Θ ( max ⁡ ( f ( n ) , g ( n ) ) ) f(n) + g(n) = Θ(\max(f(n), g(n))) f(n)+g(n)=Θ(max(f(n),g(n)))
    c. 假设成立。若 f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)),则 ∃ c 、 n 0 > 0 , s . t . 0 ≤ f ( n ) ≤ c g ( n ) \exists c、n_0>0,s.t.0≤f(n)≤cg(n) cn0>0,s.t.0f(n)cg(n) ∃ n 1 > 0 , f ( n ) ≥ max ⁡ ( 1 , c 2 , 2 ∣ c ∣ ) , 即 lg ⁡ ( f ( n ) ) > 0 , g ( n ) ≥ c 且 g ( n ) > 2 \exists n_1>0,f(n)≥\max(1,c^2,2|c|),即\lg(f(n))>0,g(n)≥c且g(n)>2 n1>0,f(n)max(1,c2,2c)lg(f(n))>0,g(n)cg(n)>2,从而 ∃ n = max ⁡ ( n 0 , n 1 ) > 0 , s . t .   0 ≤ lg ⁡ f ( n ) ≤ lg ⁡ c g ( n ) = lg ⁡ c + lg ⁡ g ( n ) ≤ 2 lg ⁡ g ( n ) \exists n=\max(n_0,n_1)>0,s.t.\space0≤\lg f(n)≤\lg cg(n)=\lg c+\lg g(n)≤2\lg g(n) n=max(n0,n1)>0,s.t. 0lgf(n)lgcg(n)=lgc+lgg(n)2lgg(n)
    d. 假设不成立。如 f ( n ) = 2 n , g ( n ) = n f(n) = 2n,g(n)=n f(n)=2n,g(n)=n
    e. 假设不成立。如 f ( n ) = 1 n f(n) = \frac1{n} f(n)=n1
    f. 假设成立。转置对称性。
    g. 假设不成立。如 f ( n ) = 2 n f(n) = 2^{n} f(n)=2n
    h. 假设成立。如设 g ( n ) = o ( f ( n ) ) g(n)=o(f(n)) g(n)=o(f(n)),则 ∀ c > 0 , ∃ n 0 > 0 , s . t . ∀ n > n 0 , 0 ≤ g ( n ) < c f ( n ) \forall c>0,\exists n_0>0,s.t.\forall n>n_0,0≤g(n)<cf(n) c>0,n0>0,s.t.n>n0,0g(n)<cf(n),于是取 c = 1 c=1 c=1,从而 ∃ n 0 > 0 , s . t . ∀ n > n 0 , 0 ≤ f ( n ) + g ( n ) < 2 f ( n ) \exists n_0>0,s.t.\forall n>n_0,0≤f(n)+g(n)<2f(n) n0>0,s.t.n>n0,0f(n)+g(n)<2f(n),故而 f ( n ) + o ( f ( n ) ) = Θ ( f ( n ) ) f(n) + o(f(n)) = Θ(f(n)) f(n)+o(f(n))=Θ(f(n))

3-5

  ( O O O Ω Ω Ω 的一些变形)某些作者用一种与我们稍微不同的方式来定义 Ω Ω Ω;假设我们使用 Ω ∞ \stackrel{\infty}{\Omega} Ω(读作“Ω 无穷”)来表示这种可选的定义。若存在正常量 c c c,使得对无穷多个整数 n n n,有 f ( n ) ≥ c g ( n ) ≥ 0 f(n) ≥ cg(n) ≥ 0 f(n)cg(n)0,则称 f ( n ) = Ω ∞ ( g ( n ) ) f(n) = \stackrel{\infty}{\Omega}(g(n)) f(n)=Ω(g(n))
  a. 证明:对渐近非负的任意两个函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n),或者 f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)) 或者 f ( n ) = Ω ∞ ( g ( n ) ) f(n) = \stackrel{\infty}{\Omega}(g(n)) f(n)=Ω(g(n)) 或者二者均成立,然而,如果使用 Ω Ω Ω 来代替 Ω ∞ \stackrel{\infty}{\Omega} Ω,那么命题并不为真。
  b. 描述用 Ω ∞ \stackrel{\infty}{\Omega} Ω代替 Ω Ω Ω 来刻画程序运行时间的潜在优点与缺点。
  某些作者也用一种稍微不同的方式来定义 O O O;假设使用 O ′ O^{'} O来表示这种可选的定义。我们称 f ( n ) = O ′ ( g ( n ) ) f(n) = O^{′}(g(n)) f(n)=O(g(n)) 当且仅当 ∣ f ( n ) ∣ = O ( g ( n ) ) |f(n)| = O(g(n)) f(n)=O(g(n))
  c. 如果使用 O ′ O^{′} O代替 O O O 但仍然使用 Ω Ω Ω,定理3.1中的“当且仅当”的每个方向将出现什么情况?
  有些作者定义 O ~ \widetilde O O (读作“软 O O O”)来意指忽略对数因子的 O O O
O ~ ( g ( n ) ) = { f ( n ) : 存 在 正 常 量 c , k 和 n 0 , 使 得 对 所 有 n ≥ n 0 , 有 0 ≤ f ( n ) ≤ c g ( n ) l g k ( n ) } \widetilde O(g(n))=\{f(n):存在正常量c,k和n_0,使得对所有n≥n_0,有0≤f(n)≤cg(n)lg^k(n)\} O (g(n))={f(n)ckn0使nn00f(n)cg(n)lgk(n)}
  d. 用一种类似的方式定义 Ω ~ \widetildeΩ Ω Θ ~ \widetildeΘ Θ 。证明与定理3.1相对应的类似结论。

  证明:a. 如果 f ( n ) = O ( g ( n ) ) f(n)=O(g(n)) f(n)=O(g(n)),那么,存在正常数 c c c n 0 n_0 n0,使对所有 n ≥ n 0 n≥n_0 nn0,有 0 ≤ f ( n ) ≤ c g ( n ) 0≤f(n)≤cg(n) 0f(n)cg(n).
      倘若 f ( n ) ≠ O ( g ( n ) ) f(n)≠O(g(n)) f(n)=O(g(n)),则任意正常数 c c c n 0 n_0 n0,都存在 n > n 0 n>n_0 n>n0,使得 f ( n ) > c g ( n ) f(n)>cg(n) f(n)>cg(n),于是对给定的常数 c c c,每次取 n i = n i − 1 + 1 n_i = n_{i-1}+1 ni=ni1+1,从而有无数个正常数 n 0 , n 1 , . . . n i , . . . n_0,n_1,...n_i,... n0,n1,...ni,...,使得 f ( n ) > c g ( n ) f(n)>cg(n) f(n)>cg(n),即 f ( n ) = Ω ∞ ( g ( n ) ) f(n) = \stackrel{\infty}{\Omega}(g(n)) f(n)=Ω(g(n))
      陈述反过来亦可。然而取渐近非负函数 f ( n ) = n , g ( n ) = 2 + sin ⁡ n f(n) = n, g(n) = 2 + \sin n f(n)=n,g(n)=2+sinn 可知不可以将命题的 Ω \Omega Ω 取代 Ω ∞ \stackrel{\infty}{\Omega} Ω
     b. 优点:任意渐近非负的两个函数的关系均可由 Ω \Omega Ω Ω ∞ \overset{\infty}{\Omega} Ω表示。
      缺点:不能明确比较两个函数的增长率的大小。
     c. 没有变化
      对于足够大的 n n n,由于 f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n)),故而 f ( n ) f(n) f(n) 渐近非负,等价于 ∣ f ( n ) ∣ = O ( g ( n ) ) |f(n)| = O(g(n)) f(n)=O(g(n))
     d. Ω ~ ( g ( n ) ) = { f ( n ) : 存 在 正 常 量 c , k 和 n 0 , 使 得 对 所 有 n ≥ n 0 , 有 0 ≤ c g ( n ) l g k ( n ) ≤ f ( n ) } \widetilde\Omega(g(n))=\{f(n):存在正常量c,k和n_0,使得对所有n≥n_0,有0≤cg(n)lg^k(n)≤f(n)\} Ω (g(n))={f(n)ckn0使nn00cg(n)lgk(n)f(n)} Θ ~ ( g ( n ) ) = { f ( n ) : 存 在 正 常 量 c 1 , c 2 , k 1 , k 2 和 n 0 , 使 得 对 所 有 n ≥ n 0 , 有 c 1 g ( n ) l g k 1 ( n ) ≤ f ( n ) ≤ c 2 g ( n ) l g k 2 ( n ) } \widetilde\Theta(g(n))=\{f(n):存在正常量c_1,c_2,k_1,k_2和n_0,使得对所有n≥n_0,有c_1g(n)lg^{k_1}(n)≤f(n)≤c_2g(n)lg^{k_2}(n)\} Θ (g(n))={f(n)c1c2k1k2n0使nn0c1g(n)lgk1(n)f(n)c2g(n)lgk2(n)}
      结论:对任意两个函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n),我们有 f ( n ) = Θ ~ ( g ( n ) ) f(n) = \widetildeΘ(g(n)) f(n)=Θ (g(n)),当且仅当 f ( n ) = O ~ ( g ( n ) ) f(n) = \widetilde O(g(n)) f(n)=O (g(n)) f ( n ) = Ω ~ ( g ( n ) ) f(n) = \widetildeΩ(g(n)) f(n)=Ω (g(n))
      必要性:
      由于 f ( n ) = Θ ~ ( g ( n ) ) f(n) = \widetildeΘ(g(n)) f(n)=Θ (g(n)),故而存在正常量 c 1 、 c 2 、 k 1 、 k 2 c_1、c_2、k_1、k_2 c1c2k1k2 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ c 1 g ( n ) lg ⁡ k 1 ( n ) ≤ f ( n ) ≤ c 2 g ( n ) lg ⁡ k 2 ( n ) 0 ≤ c_1g(n)\lg^{k_1}(n) ≤ f(n) ≤ c_2g(n)\lg^{k_2}(n) 0c1g(n)lgk1(n)f(n)c2g(n)lgk2(n)。故而存在正常量 c 2 、 k 2 c_2、k_2 c2k2 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ f ( n ) ≤ c 2 g ( n ) lg ⁡ k 2 ( n ) 0 ≤ f(n) ≤ c_2g(n)\lg^{k_2}(n) 0f(n)c2g(n)lgk2(n),即 f ( n ) = O ~ ( g ( n ) ) f(n) = \widetilde O(g(n)) f(n)=O (g(n))。存在正常量 c 1 、 k 1 c_1、k_1 c1k1 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ c 1 g ( n ) lg ⁡ k 1 ( n ) ≤ f ( n ) 0 ≤ c_1g(n)\lg^{k_1}(n) ≤ f(n) 0c1g(n)lgk1(n)f(n) f ( n ) = Ω ~ ( g ( n ) ) f(n) = \widetildeΩ(g(n)) f(n)=Ω (g(n))
      充分性:
       f ( n ) = O ~ ( g ( n ) ) f(n) = \widetilde O(g(n)) f(n)=O (g(n)) f ( n ) = Ω ~ ( g ( n ) ) f(n) = \widetildeΩ(g(n)) f(n)=Ω (g(n)),则存在正常量 c 2 、 k 2 c_2、k_2 c2k2 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ f ( n ) ≤ c 2 g ( n ) lg ⁡ k 2 ( n ) 0 ≤ f(n) ≤ c_2g(n)\lg^{k_2}(n) 0f(n)c2g(n)lgk2(n),即 f ( n ) = O ~ ( g ( n ) ) f(n) = \widetilde O(g(n)) f(n)=O (g(n));存在正常量 c 1 、 k 1 c_1、k_1 c1k1 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ c 1 g ( n ) lg ⁡ k 1 ( n ) ≤ f ( n ) 0 ≤ c_1g(n)\lg^{k_1}(n) ≤ f(n) 0c1g(n)lgk1(n)f(n) f ( n ) = Ω ~ ( g ( n ) ) f(n) = \widetildeΩ(g(n)) f(n)=Ω (g(n))。故存在正常量 c 1 、 c 2 、 k 1 、 k 2 c_1、c_2、k_1、k_2 c1c2k1k2 n 0 n_0 n0,使得对所有 n ≥ n 0 n ≥ n_0 nn0,有 0 ≤ c 1 g ( n ) lg ⁡ k 1 ( n ) ≤ f ( n ) ≤ c 2 g ( n ) lg ⁡ k 2 ( n ) 0 ≤ c_1g(n)\lg^{k_1}(n) ≤ f(n) ≤ c_2g(n)\lg^{k_2}(n) 0c1g(n)lgk1(n)f(n)c2g(n)lgk2(n) f ( n ) = Θ ~ ( g ( n ) ) f(n) = \widetildeΘ(g(n)) f(n)=Θ (g(n))

3-6

  (多重函数)我们可以把用于函数 lg ⁡ ∗ \lg^* lg 中的重复操作符 ∗ * 应用于实数集上的任意单调递增函数 f ( n ) f(n) f(n)。对给定的常量 c ∈ R c \in R cR,我们定义多重函数 f c ∗ f^*_c fc f c ∗ ( n ) = min ⁡ { i ≥ 0 : f ( i ) ( n ) ≤ c } f^*_c(n)=\min\{i≥0:f^{(i)}(n)≤c\} fc(n)=min{i0:f(i)(n)c}  该函数不必在所有情况下都为良定义的。换句话说,值 f c ∗ ( n ) f^*_c(n) fc(n) 是为缩小其参数到 c c c 或更小所需要函数 f f f 重复应用的数目。
  对如下每个函数 f ( n ) f(n) f(n) 和常量 c c c,给出 f c ∗ ( n ) f^*_c(n) fc(n) 的一个尽量紧确的界。

f(n)c f c ∗ ( n ) f^*_c(n) fc(n)
a. n − 1 n-1 n10 n − 1 , Θ ( n ) n-1,\Theta(n) n1,Θ(n)
b. lg ⁡ n \lg n lgn1 lg ⁡ ∗ n , Θ ( lg ⁡ ∗ n ) \lg^*n,\Theta(\lg^*n) lgn,Θ(lgn)
c. n 2 \frac{n}{2} 2n1 lg ⁡ n , Θ ( lg ⁡ n ) \lg n,\Theta(\lg n) lgn,Θ(lgn)
d. n 2 \frac{n}{2} 2n2 lg ⁡ n − 1 , Θ ( lg ⁡ n ) \lg n-1,\Theta(\lg n) lgn1,Θ(lgn)
e. n \sqrt n n 2 lg ⁡ lg ⁡ n , Θ ( lg ⁡ lg ⁡ n ) \lg\lg n,\Theta(\lg\lg n) lglgn,Θ(lglgn)
f. n \sqrt{n} n 1 n > 1 n>1 n>1时不存在
g. n 1 3 n^{\frac{1}{3}} n312 log ⁡ 3 lg ⁡ n , Θ ( log ⁡ 3 lg ⁡ n ) \log_3\lg n,\Theta(\log_3\lg n) log3lgn,Θ(log3lgn)
h. n lg ⁡ n \frac{n}{\lg n} lgnn2 ω ( l g l g n ) , o ( l g n ) ω(lglgn),o(lgn) ω(lglgn),o(lgn)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值