
Tensorflow2/keras基础课程
文章平均质量分 90
本专栏主要讲述Tensorflow2.x中常用API的使用,包括如何构建模型、如何训练,如何使用损失函数、优化器等,其核心为keras,阐述了从变量到layer、model、compile、loss、optimizer、metric、gradient、callback等的全过程。
爱编程的喵喵
双985硕士毕业,现担任AI大模型全栈工程师一职,热衷于将数据思维应用到工作与生活中。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。官方认证“人工智能领域优质创作者”,入选2023年中国开发者影响力年度榜单,荣获付费内容优质创作者称号。代表专栏《Python基础课程》、《Linux解决方案》、《Windows实用技巧》、《机器学习理论与实战》、《从零开始学Java》等。
展开
-
Tensorflow 2.x源码详解之开宗明义:基本介绍和张量(万文多图)
1. tf2简介2. 张量tensor(eager tensor)2.1 张量简介2.2 创建张量(tensor)2.2.1 tf.constant2.2.2 constant_initializer:指定shape和value的类2.2.3 tf.eye:单位矩阵或指定的1矩阵2.2.4 tf.fill:指定shape和value2.2.5 one_hot2.2.6 tf.ones:指定shape,value为12.2.7 ones_initializer....原创 2022-01-24 16:24:15 · 19856 阅读 · 0 评论 -
Tensorflow 2.x源码详解之第二章:变量的详细讲解
本文主要介绍了Tensorflow 2.x源码详解之第二章:变量的详细讲解,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 前言2. 变量的创建3. 变量的重新赋值4. 变量设备的选择原创 2022-01-26 08:38:38 · 12056 阅读 · 0 评论 -
Tensorflow 2.x源码详解之第三章:导数(梯度/GradientTape)
本文主要介绍了Tensorflow 2.x源码详解之第三章:导数(梯度/GradientTape),希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 一阶梯度(导数或微分) 1.1 初识梯度计算 1.2 监控 1.3 中间结果求梯度 1.4 多次调用 1.5 模型梯度 1.6 非标量目标梯度 1.7 常见问题2. 高阶梯度原创 2022-02-07 13:42:07 · 15494 阅读 · 3 评论 -
Tensorflow 2.x(keras)源码详解之第四章:Dataset&TFRecord
1. data input pipelines(Dataset)1.1 构造Dataset及简介1.1.1 tf.data.Dataset.from_tensor_slices1.1.2 tf.data.Dataset.from_tensor1.1.3 tf.data.Dataset.from_generator1.1.4 tf.data.Dataset.range1.1.5 tf.data.TFRecordDataset1.1.6 tf.data.TextLineDataset1.1.7原创 2022-04-19 17:28:03 · 13105 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第五章:数据预处理
本文主要介绍了Tensorflow 2.x(keras)源码详解之第五章:数据预处理,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 数据预处理流程2. 实战代码原创 2022-04-21 16:21:47 · 11990 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第六章:2万文字解读Module&(自定义)layer&(自定义)Model
1. Modules & layers & models基本认识2. tf.keras.layers模块及自定义layer2.1 tf.keras.layers模块介绍2.2 自定义layer2.2.1 Layer源码及自定义layer2.2.2 call() 方法中的特权 training 参数2.2.3 call() 方法中的 mask 参数2.2.4 keras中的layer2. 自定义model和函数式API2.1 自定义model2.2 函数式API2.2.1 基本认识原创 2022-05-12 09:35:48 · 47930 阅读 · 2 评论 -
Tensorflow 2.x(keras)源码详解之第七章:keras中的tf.keras.layers
1. 综述2. 激活函数Activation3. Dense4. Conv2D5. MaxPool2D6. GlobalMaxPool2D7. AveragePooling2D8. GlobalAveragePooling2D9. Conv1D10. MaxPool1D11. AveragePooling1D12. GlobalMaxPool1D13. GlobalAveragePooling1D14 RNN相关14.1 SimpleRNNCell14.2 RNN14.3 .原创 2020-06-10 09:20:09 · 9225 阅读 · 6 评论 -
Tensorflow 2.x(keras)源码详解之第八章:keras中构建模型的三种方法(含自定义Model)
本文主要介绍了Tensorflow 2.x(keras)源码详解之第八章:keras中构建模型的三种方法(含自定义Model),希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 前言2. 函数式API:基于tf.keras.Input和tf.keras.Model3. 基于序贯模型:Sequential4. 继承tf.kearas.Model自定义5. 三种方法的比较原创 2022-05-13 12:36:53 · 47809 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第九章:模型训练和预测的三种方法(fit&tf.GradientTape&train_step&tf.data)
文章目录1. 模型训练和预测步骤2. 使用内置方法fit进行训练和评估2.1 简单案例解析2.2 compile编译2.3 处理非标准化的损失和评估指标:add_loss&add_metric2.4 自动切分验证集2.5 使用tf.data数据进行训练2.6 使用tf.keras.utils.Sequence数据进行训练2.7 多输出,指定不同的损失函数和评估指标2.8 样本不均衡:类权重和样本权重2.9 使用回调(callbacks)2.10 学习率衰减3. 从头开始编写循环训练3.1 fit源码原创 2022-05-16 10:05:13 · 61088 阅读 · 2 评论 -
Tensorflow 2.x(keras)源码详解之第十章:keras中的模型保存与加载(详解Checkpoint&md5&模型序列化)
1. 模型保存与加载:综述2. 前提总结3. 仅保存模型权重3.1 在内存中将权重进行迁移3.2 将权重保存到磁盘上3.2.1 Checkpoint(检查点)3.2.2 使用tf.train.checkpoint()保存多个检查点3.2.3 使用tf.train.checkpoint加载多个检查点3.2.4 tf.train.checkpoint保存和加载单一检查点3.2.5 save_weights保存检查点3.2.6 save_weights保存成HDF5格式4. 仅保存模型架构原创 2022-05-18 15:54:53 · 45150 阅读 · 2 评论 -
Tensorflow 2.x(keras)源码详解之第十一章:keras损失函数及自定义损失函数
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十一章:keras损失函数及自定义损失函数,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. API使用(初印象) 1.1 损失函数源码解析2. 自定义损失函数 2.1 定义函数的方法 2.2 定义类的方法原创 2022-05-23 17:47:33 · 23935 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第十二章:keras中的损失函数之BinaryCrossentropy详解
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十二章:keras中的损失函数之BinaryCrossentropy详解,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. BinaryCrossentropy实例化参数2. BinaryCrossentropy调用实例化对象时输入的参数3. 详解smaple_weight&reduction3.1 sample_weight=None, axis=-1, reduction="none"3.2 ...原创 2022-05-30 20:56:31 · 15794 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第十三章:keras中的评价指标及自定义评价指标
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十三章:keras中的评价指标及自定义评价指标,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. keras中API使用方法2. 自定义评价指标原创 2022-06-11 20:42:35 · 14627 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第十四章:keras中的回调及自定义回调
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十四章:keras中的回调及自定义回调,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 前言2. keras中的回调函数2.1 EarlyStopping早停2.2 ModelCheckpoint保存模型检查点2.3 LearningRateScheduler更新学习率12.4 ReduceLROnPlateau更新学习率22.5 LambdaCallback2.6 CSVLogger2.7 ...原创 2022-06-20 21:54:04 · 21309 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第十五章:迁移学习与微调
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十五章:迁移学习与微调,希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 迁移学习与微调2. 了解 `trainable` 特性3. keras实现典型的迁移学习工作流4. 微调5. 使用自定义训练循环进行迁移学习和微调6. 一个端到端的实例:基于 Dogs vs. Cats 数据集微调图像分类模型原创 2022-07-02 22:21:04 · 23622 阅读 · 0 评论 -
Tensorflow 2.x(keras)源码详解之第十六章:分布式部署(如何使用GPU)
本文主要介绍了Tensorflow 2.x(keras)源码详解之第十六章:分布式部署(如何使用GPU),希望能对学习TensorFlow 2的同学有所帮助。文章目录1. 分布式训练前言2. 指定使用cpu3. 使用多块GPU4. 限制GPU内存5. 单块GPU模拟多GPU并行原创 2022-07-07 17:15:51 · 13977 阅读 · 3 评论 -
tensorflow/keras如何自定义layer
本文主要介绍了tensorflow2/keras中如何自定义layer,在经过了亲身的实践后,终于找到了可复现的实战代码,最终将详细的代码总结如下,希望能对学习tensorflow2/keras的同学有所帮助。文章目录1. 自定义layer简单实例2. tf.keras.layers.Layer源码解析3. 总结及案例原创 2023-05-21 10:28:14 · 13183 阅读 · 4 评论 -
tensorflow及其keras如何保存模型
本文主要介绍tensorflow及其keras保存并加载模型的实战代码,在经过了亲身的实践后,终于找到了可复现的实战代码,最终将详细的代码总结如下,希望能对学习tensorflow2/keras的同学有所帮助。文章目录1. keras模型保存概述2. TensorFlow SavedModel 格式 2.1 使用高级API:tf.keras.models.save_model 2.2 使用低级API:tf.saved_model.save3. keras HDF5格式原创 2023-05-28 07:30:00 · 11789 阅读 · 4 评论 -
tensorflow2 gpu使用
本文主要介绍了tensorflow2 gpu使用,希望能对学习tensorflow的同学有所帮助。文章目录1. 前言2. 设置使用cpu3. 设置使用GPU个数4. 设置使用GPU显存大小5. 单GPU模拟多GPU环境原创 2020-04-14 22:40:25 · 19056 阅读 · 6 评论