论文笔记: 对抗样本 CVPR2021 Enhance Transferability of Adversarial Attacks through Variance Tuning

本文介绍了CVPR2021一篇论文,提出了Variance Tuning方法来提升基于梯度的攻击迁移性。通过调节梯度变化,该方法在面对9种防御模型时取得了90.1%的平均攻击成功率,显著优于现有攻击技术。Variance Tuning可应用于MI-FGSM和NI-FGSM等攻击,提高对抗样本的通用性和跨模型攻击性能。
摘要由CSDN通过智能技术生成


论文作者: Xiaosen Wang    Kun He
作者单位: School of Computer Science and Technology, Huazhong University of Science and Technology
作者邮箱: {xiaosen,brooklet60}@hust.edu.cn
源代码: https://github.com/JHL-HUST/VT.

Abstract 摘要

  作者提出一种方法——varirance tuning,其增强了基于梯度迭代攻击方法,提高了攻击的迁移性。
  效果:基于梯度迭代攻击方法加入variance tuning在输入变换以及多模型的设置下,面对9种防御方法可以达到90.1%的平均攻击成功率,将当下最好攻击效果提高了85.1%。

1. Introduction 引言

1.1 背景

  近年来,对抗样本激起广泛的兴趣,一方面其可以检验模型的脆弱性,另一方面可以提供模型的鲁棒性。
  基于白盒攻击生成的对抗样本展现出很好的有效性,但是迁移性低,尤其是攻击使用了防御机制的模型。为解决此问题,当下研究聚焦于提高对抗样本的迁移性,如优化的梯度计算(Momentum,Nesterov’s accelerated gradient 等),攻击多种模型,采用各种输入变换(random resizing and padding, tranalstion, scale, admix, etc.)。然而,白盒攻击与基于迁移黑盒攻击仍有较大差距。

1.2 引入

  作者提出了一种新颖的方法——variance tuning。相较于已有的基于梯度的方法,该方法使用临近过去数据点的梯度变化来额外调节当下梯度。主要思想是在每次迭代时减少梯度的变化,从而在搜素过程中稳定更新方向并摆脱局部最优解。

2. 相关工作 Related Work

  1. 符号定义
符号 含义
x 原始图片
y 图片对应的标签
J ( x , y ; θ ) J(x,y;\theta) J(x,y;θ) 分类器的损失函数
x a d v x^{adv} xadv 对抗样本
|| ⋅ \cdot || p _p p p-范数距离

2.1 对抗样本攻击

  1. 对抗样本攻击包括基于梯度的方法(gradient-based methods)基于优化的方法(optimization-based methods)基于分数的方法(score-based methods)基于决策的方法(decision-based methods)
  2. 聚焦于攻击迁移性,作者简述了基于迁移攻击的两个分支:
  • 基于梯度的攻击(Gradient-based Methods): 应用高级的梯度计算来提高迁移性。如:
    • Fast Gradient Sign Method (FGSM)
      x a d v = x + ϵ ⋅ s i g n ( ∇ x J ( x , y ; θ ) ) x^{adv}=x+\epsilon \cdot sign(\nabla_x J(x,y;\theta)) xadv=x+ϵsign(xJ(x,y;θ))
    • Iterative Fast Gradient Sign Method (I-FGSM)
      x t + 1 a d v = x t a d v + α ⋅ s i g n ( ∇ x t a d v J ( x t a d v , y ; θ ) ) x 0 a d v = x x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot sign(\nabla_{x_t^{adv}} J(x_t^{adv},y;\theta)) \\x_0^{adv}=x xt+1adv=xtadv+αsign(xtadvJ(xtadv,y;θ))x0adv=x
    • Momentum Iterative Fast Gradient Sign Method (MI-FGSM)
      g t + 1 = μ ⋅ t + ∇ x t a d v J ( x t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值