RAG简介

RAG简介

1、大模型现阶段的问题:”幻觉“

什么是大模型幻觉问题

  • 大模型幻觉问题(Hallucination in Large Language Models)是指在大型语言模型(LLM)生成文本时,模型可能会产生不正确、无意义或与训练数据无关的内容。这种现象通常发生在模型试图生成看似合理但实际不准确的信息时。

为什么会出现幻觉问题

  • 大型语言模型是根据训练数据中获取知识,但很难判断模型记住了哪些知识。"幻觉"是指模型生成不正确、无意义或不实文本的现象。

幻觉的分类

  • 逻辑谬误:模型在进行推理时出现错误,提供错误的答案。
  • 捏造事实:模型自信地断言不存在的事实。
  • 数据驱动的偏见:模型的输出可能偏向某些方向,导致错误的结果。

现阶段“幻觉”的解决思路:

  • 为了解决幻觉问题,可以采用检索增强生成(Retrieval-Augmented Generation, RAG)等技术。RAG通过从外部知识库检索事实,以最准确、最新的信息为基础,增强语言模型的生成能力,确保模型能够访问最新、可靠的事实。

2、什么是RAG

  • RAG可从外部知识库检索事实,以最准确、最新的信息为基础的自然语言模型(LLM),并让用户深入了解LLM的生成过程。

RAG的特点

  • RAG是一种相对较新的人工智能技术,可以通过允许大型语言模型(LLM)在无需重新训练的情况下利用额外的数据资源来提高生成式AI的质量。
  • RAG模型基于组织自身的数据构建知识存储库,并且存储库可以不断更新,以帮助生成式AI提供及时的上下文答案。
  • 使用自然语言处理的聊天机器人和其他对话系统可以从RAG和生成式人工智能中受益。
  • 实施RAG需要失量数据库等技术,这些技术可以快速编码新数据,并搜索该数据以输入给LLM模型。

RAG的两个阶段

  • 检索阶段:算法搜索并检索与用户提示或问题相关的信息片段。在开放域的消费者环境中,这些事实可以来自互联网上的索引文档;在封闭域的企业环境中,通常使用较小的一组源来提高安全性和可靠性。
  • 生成阶段:大模型从增强提示及其训练数据的内部表示中提取信息,以在那一刻为用户量身定制引人入胜的答案。然后可以将答案传递给聊天机器人,并附上其来源的链接。

RAG面临的一些挑战

  • 技术太新及其研究较少。
  • 如何对知识库和向量数据库中结构化和非结构化数据建模。
  • 整个RAG工程化模型面临的流程问题。
  • 如何处理不准确信息来源以及如何剔除不准确信息。

3、需要RAG来解决的问题

  • 长尾问题:LLM模型训练数据非常庞大,参数量也非常多,训练数据来源丰富。但对于一些长尾知识,LLM通常回复并不可靠。ICML会议上的研究显示,预训练数据中相关文档数量越多,LLM对事实性问答的回复准确性就越高。

  • 私有数据:使用特定的私有数据进行学习,但要注意隐私信息泄漏的问题。

  • 信息更新:RAG可以把更新的知识放在外部数据库,在问题的时候检索最新的知识。

  • 可解释性:RAG可以解决可解释性、信息溯源、信息验证等问题。

4、RAG工程化的优化方案

部署有效的RAG系统需要进行大量实验来优化每个组件,部署有效的 RAG 系统需要进行大量实验来优化每个组件,包括数据收集、模型嵌入、分块策略等。按照步骤可以将其分为数据索引模块、数据检索模块以及LLM生成模块。这里仅仅讲一些评估方法以及需要注意的点,毕竟新技术仍处于快速发展研究状态,没有一个完整确切的解决方案。

数据索引模块

  • RAG系统的性能高度依赖于它们所训练的数据的质量。
  • 数据质量、数据准备、数据源、元数据、附加上下文和知识都影响RAG系统的数据。

嵌入模型

  • 嵌入模型的选择会明显影响检索和质量得分。

数据检索模块

  • 查询文本的表达方法直接影响检索结果。

LLM生成模块

  • LLM通过利用相关文档片段中的信息生成了精确的答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alstonlou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值