生成模型概述

生成模型概述

一、生成模型类型

  生成模型是深度学习领域的一类模型,它们的目标是学习如何生成数据的分布,从而能够生成新的、与真实数据类似的样本。

  以下是一些主要的生成模型:

  • 生成对抗网络(GANs):
    GAN由两个部分组成:生成器(生成新数据)和判别器(区分真实数据和生成的数据)。这两部分在训练过程中相互竞争,提高彼此的性能。
    应用:图像生成、艺术创作、数据增强、风格迁移等。

  • 自回归模型(Autoregressive Models):
    如Transformer在自然语言处理领域的应用。这些模型预测序列中的下一个元素,基于前面的元素。
    应用:文本生成、机器翻译等。

  • 扩散模型(Diffusion Models):
    这类模型通过将数据转化为噪声,然后再逆过程中重建原始数据,来生成新的数据样本。
    应用:高质量图像生成、文本到图像生成等。

  • 流模型(Flow-based Models):
    如RealNVP和Glow,这些模型通过可逆的神经网络变换实现从数据空间到潜在空间的映射。
    应用:图像生成、数据去噪、概率建模等。

  • 变分自编码器(VAEs):

    VAE是一种基于贝叶斯推理的生成模型,它通过编码器将数据映射到潜在空间,然后通过解码器从潜在空间重构数据。
    应用:图像生成、图像去噪、推荐系统等。

  • 循环神经网络(RNNs)及其变体(如LSTM、GRU):

    RNN及其变体特别擅长处理序列数据,可以用于生成文本、音乐等序列数据。
    应用:文本生成、语音合成、音乐创作等。

  其中,较为常见的方法主要为:生成对抗网络(GANs),自回归模型(Autoregressive Models),扩散模型(Diffusion Models)和Flow-base model。

二、生成对抗网络(GANs)

生成对抗网络的基本原理可以看左侧的示意图。

在这里插入图片描述
  2014 年,Ian J.Goodfellow 提出了 GAN,它是由一个生成器 G 和一个判别器 D 组成。生成网络产生「假」数据,并试图欺骗判别网络;训练的时候,判别网络对生成数据进行真伪鉴别,试图正确识别所有「假」数据。在训练迭代的过程中,两个网络持续地进化和对抗,直到达到平衡状态,判别网络无法再识别「假」数据。

  推理的时候,只要保留生成器 G 就行了,输入一个随机噪声 vector,生成一张图像。

  右侧是一个经典的 AttnGAN 的框架,是一个引入了 attention 结构(使得图片生成局部能够和文本描述更加匹配)、并且从粗粒度到细粒度 coarse to fine 进行生成的框架,在当时还是取得了不错的生成效果。

  GAN 的优势是在一些窄分布(比如人脸)数据集上效果很好,采样速度快,方便嵌入到一些实时应用里面去。

  缺点是比较难训练、不稳定,而且有 Mode Collapse(模式崩塌)等问题。

三、自回归模型(Autoregressive Models)

  第二种方法是自回归方式,自回归方式在自然语言中用的比较多,像大家听到最多的比如 GPT 系列。

在这里插入图片描述

  这个方法比较出名的就是 VQGAN,还有就是 openai 的 dall-e。

  VQGAN 是将类似的思路拓展到了视觉生成领域。他主要包括两个步骤:

  第一步:将原始的 RGB 图像通过 vqvae 或者 vqgan 离散压缩成一系列的 视觉 code,这些视觉 code 可以利用一个训练得到的 decoder 恢复出原始的图像信息,当然会损失一些细节,但整体恢复质量还是 OK 的,特别是加了 GAN loss 的。

  第二步:利用 transformer 或者 GPT,来按照一定的顺序,逐个的去预测每个视觉 code,当所有 code 都预测完了之后,就可以用第一步训练好的 Decoder 来生成对应的图像。因为每个 code 预测过程是有随机采样的,因此可以生成多样性比较高的不同图像。

四、扩散模型(Diffusion Models)

  扩散模型也就是我们目前大多数文生图模型所采用的技术。

  扩散模型也分为两个过程,一个是前向过程,通过向原始数据不断加入高斯噪声来破坏训练数据,最终加噪声到一定步数之后,原始数据信息就完全被破坏,无限接近与一个纯噪声。另外一个过程是反向过程,通过深度网络来去噪,来学习恢复数据。

  训练完成之后,我们可以通过输入随机噪声,传递给去噪过程来生成数据。这就是 DDPM 的基本原理。

  图中是 DALLE2 的一个基本框架,他的整个 pipeline 稍微有些复杂,输入文本,经过一个多模态的 CLIP 模型的文本编码器,学习一个 prior 网络,生成 clip 图像编码,然后 decoder 到 64*64 小图,再经过两个超分网络到 256*256,再到 1024*1024。

在这里插入图片描述

五、流模型(Flow-based Models)

OpenAI 曾经根据 GLOW 做过一些 Demo,Demo 网址:Glow: Better reversible generative models (openai.com)我们在这里给出 Demo的一些功能和简单的原理。

  flow model 原理参考本人的另一篇博客:生成模型-流模型(Flow)

人脸混合:将一个人脸通过 G 逆输出成 z1,另一个人脸通过 G 逆输出成 z2,然后 z1 与 z2 取平均,平均值再通过 G,就可以得到混合后的人脸:

在这里插入图片描述

参考

常见的生成模型有哪些?_生成模型科普-CSDN博客

https://github.com/datawhalechina/sora-tutorial/tree/main/docs

<think>好的,我现在要解决用户的问题,关于C语言编译错误#70:“incomplete type is not allowed”。首先,我需要理解这个错误的含义以及常见原因。根据用户提供的引用资料,特别是引用[1]和[4],这个错误通常与不完整类型有关,比如数组未指定大小或者结构体未完全定义。 接下来,我应该分步骤分析可能的原因。首先,用户可能在声明数组时没有指定大小,导致编译器无法确定数组的大小,这在引用[4]中提到过。例如,如果在另一个文件中定义了数组,但在当前文件声明时没有指定大小,使用sizeof就会出错。这时候需要检查数组的声明是否正确,确保在声明时指定了大小。 然后,结构体或联合体的不完整定义也是一个常见原因。例如,如果结构体在头文件中只是前向声明而没有完整定义,在尝试访问其成员时会引发此错误。需要检查结构体的定义是否完整,特别是在多个文件中的使用情况。 另外,用户可能在函数参数中使用了不完整类型。例如,如果函数参数是一个数组但没有指定大小,或者是指向未定义结构体的指针,这也会导致错误。需要确保所有函数参数的类型都是完整的。 此外,使用未初始化的指针或动态内存分配错误也可能导致这个问题。虽然引用中没有直接提到,但作为常见错误,可能需要考虑。例如,使用malloc分配内存但没有正确指定类型大小,或者指针未正确初始化。 根据引用[3]中的例子,使用memset时如果数组类型不完整,sizeof操作符无法确定大小,导致错误。这时候需要确保数组在声明时已经指定了大小,或者在外部声明时正确引入大小信息。 总结可能的解决方案步骤:检查所有数组声明是否指定大小;确保结构体和联合体的完整定义;验证函数参数的类型是否完整;检查外部变量的声明是否正确引入大小。同时,参考用户提供的案例,特别是引用[4]中的情况,强调在跨文件使用时声明数组大小的重要性。 最后,生成相关问题,帮助用户进一步排查可能的相关问题,例如结构体定义错误、跨文件变量声明等。确保用户能够全面理解错误原因,并采取正确的解决步骤。</think>### C语言 error #70: incomplete type is not allowed 解决方案 **错误说明** 编译错误 `#70: incomplete type is not allowed` 表示代码中使用了**不完整类型**(incomplete type)。不完整类型指编译器无法确定该类型的具体大小或结构,常见于以下场景: --- ### 常见原因及解决方法 #### 1. **数组未指定大小** **问题示例**: ```c extern int arr[]; // 未声明数组大小 int len = sizeof(arr) / sizeof(arr[0]); // 编译器无法计算大小[^4] ``` **解决方案**: 在声明数组时明确指定大小: ```c extern int arr[10]; // 其他文件中定义的数组大小需与此一致 ``` **典型场景**:跨文件使用全局数组时,需在声明处指定大小[^4][^3]。 --- #### 2. **结构体/联合体未完全定义** **问题示例**: ```c struct MyStruct; // 前向声明(不完整类型) void func(struct MyStruct s) { // 错误:无法确定结构体大小[^2] s.member = 10; } ``` **解决方案**: 在使用前完整定义结构体: ```c struct MyStruct { int member; }; ``` **注意**:若结构体定义在头文件中,需确保所有使用该结构体的文件包含此头文件。 --- #### 3. **函数参数中使用不完整类型** **问题示例**: ```c void func(int arr[]) { // 等同于 int* arr,但若需使用sizeof会出错 int size = sizeof(arr); // 错误:返回指针大小而非数组大小 } ``` **解决方案**: 显式传递数组大小参数: ```c void func(int arr[], int size) { // 通过size参数操作数组 } ``` --- #### 4. **动态内存分配错误** **问题示例**: ```c struct Data* ptr = malloc(sizeof(struct Data)); // Data未定义时出错[^1] ``` **解决方案**: 先定义结构体再分配内存: ```c struct Data { int value; }; struct Data* ptr = malloc(sizeof(struct Data)); ``` --- ### 排查步骤 1. **检查数组声明**:确保所有数组在声明时指定大小(包括`extern`声明)。 2. **验证结构体定义**:检查是否在使用前完整定义了结构体/联合体。 3. **检查函数参数类型**:避免传递不完整类型的参数。 4. **查看动态内存分配**:确保类型已完整定义后再使用`sizeof`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alstonlou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值