第一个机器学习算法——单变量线性回归

线性回归基础

从我们最熟悉的开始:
在这里插入图片描述
在这里插入图片描述
m:表示训练集数据的总量
x:表示输入变量
y:表示输出变量
(x,y): 表示一个训练样本
(x(i),y(i)): 表示第i个训练样本
有监督的学习:可以预测到一个确定的结果

对于一元线性回归(单变量线性回归)来说,学习算法为y=ax+b,换一种写法就为h(x)=theta0 + theta1.x1
在这里插入图片描述
线性回归实际上要做的事情就是: 选择合适的参数(w, b),使得f(x)方程,很好的拟合训练集

损失函数的引入

在这里插入图片描述
w=0, b=180
f(x) = 180
在这里插入图片描述
w=-3, b=360
f(x) = -3x + 360
在这里插入图片描述
w=2, b=20
f(x) = 2x + 20
在这里插入图片描述
模型:
hθ(x) = θ0 + θ1x1
参数:
θ0, θ1
损失函数:
在这里插入图片描述
目标:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
其损失函数:在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

梯度下降

梯度下降的思想:
条件:我们有一个J(theta0,theta1)
目标:让J(theta0,theta1)最小
步骤:
1.初始化theta0,theta1。
2.持续该变theta0,theta1的值,让J(theta0,theta1)越来越小。
3.直到得到一个J(theta0,theta1的最小值)

在这里插入图片描述
梯度下降算法:
重复执行直到收敛:
在这里插入图片描述
(for j=0 and j=1)
同步更新:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
非同步更新:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
梯度下降中,无论斜率正或者负,梯度下降都会逐渐趋向最小值。

问:假设theta已经在最低点了,会怎样?
答:如果遇见存在有多个最低点的函数段,在到达第一个函数最低点时,就不会再上升了,就会停留在该局部最低点。

梯度下降的局部最小值问题:
在这里插入图片描述
并不是所有的损失函数看起来都像是一个漂亮的碗,有的可能像山洞、山脉、高原或者各种不规则的地形,导致很难收敛到最小值。
比如上图,如果随机初始值从左侧起步,那么会收敛到一个局部最小值,而不是全局最小值;如果算法从右侧起步,那么需要经过很长时间才能越过正整片高原。如果你停下得太早,将永远达不到全局最小值

如何应对梯度下降的局部最小值问题:

在这里插入图片描述
答:
1.对于MSE来说,因为损失函数是个凸函数,所以不存在局部最小值,只有一个全局最小值
2. 通过随机初始化θ,可以避开局部最小值
3. 对于多变量,高维度的值,就算在某个维度上陷入和局部最小值,但是还能从别的维度跳出

我们把梯度下降扩展到2维:在这里插入图片描述
扩展到2维以后,只要我们知道在每一个维度(分量)上的梯度下降情况,通过向量加和,我们也可以得到梯度在高维上整体的移动情况

在这里插入图片描述
在上式中,如果alfa太小的话,梯度下降会很慢,如果太大,下降过程中则会越国最小值,不仅不会收敛,而且有可能发散
(alfa被称为学习率,或者步长)

即使学习率alfa是固定不变的,梯度下降也会收敛到一个最低点。因为随着梯度下降迭代次数的递增,斜率会趋于平缓,也就是说,倒数部分会慢慢变小。

在这里插入图片描述
在处理一些多维度,数据差异较大的样本中,需要将数据进行归一化处理,才能保证数据预测过后具有较高的准确性。

梯度下降分类

1.批梯度下降:指的是每下降一步,使用所有的训练集来计算梯度值。
2.随机梯度下降:指的是每下降一步,使用一条训练集来计算梯度值。
3.Mini-Batch梯度下降:指的是每下降一步,使用一部分的训练集来计算梯度值。

梯度下降实例

练习1 – 利用批梯度下降做线性回归的预测
代码实现:

X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
X_b = np.c_[np.ones((100, 1)), X]
# print(X_b)

learning_rate = 0.1
# 通常在做机器学习的时候,一般不会等到他收敛,因为太浪费时间,所以会设置一个收敛次数
n_iterations = 1000
m = 100

# 1.初始化theta, w0...wn
theta = np.random.randn(2, 1)
count = 0

# 4. 不会设置阈值,之间设置超参数,迭代次数,迭代次数到了,我们就认为收敛了
for iteration in range(n_iterations):
    count += 1
    # 2. 接着求梯度gradient
    gradients = 1/m * X_b.T.dot(X_b.dot(theta)-y)
    # 3. 应用公式调整theta值, theta_t + 1 = theta_t - grad * learning_rate
    theta = theta - learning_rate * gradients

print(count)
print(theta)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值