poj 1180 Batch Scheduling 斜率优化dp

题目:http://poj.org/problem?id=1180

对于这道题,可以写出一个一维dp方程

sumt : t(每个任务所需要时间)的前缀和      

sumf : f(每个人物的费用系数)的前缀和

dp[i]: 执行以第i个任务为结尾的时候总费用最小

那么其实不用管前面已经分了多少段,对于每一个小于i的j,都可以尝试以j~i为一段,

但是一段开始之前需要额外付出s的时间代价,这对以后都有影响,但是可以提前计算影响,并假如该次dp中

此时时间复杂度为O(N^2)

对于每一个dp[i],可以将i看成常量提出来,以求找到化简方法

对于这种含ij乘积的,可以使用斜率优化dp , 将dp[i]看成y , sumf[j]看成x ,整体看成函数,此时min可以去掉

 

可以看出x,y分别是一个一个点,   要使得dp[i]最大,则线断截距最大,因为含i的部分看成常数,所以该直线斜率固定

j从小到大读入,所以sumf[j]是递增的,也就是x是递增的读入,考虑这种情况下什么时候截距最小

当AB 斜率小于k , BC斜率大于k 的时候,B就是最优答案。

也就是B之前的直线斜率需要小于k,B之后的直线斜率需要大于k,因此可以使用优先队列维护所有连续的大于k的直线,取最左端则是答案。

注意到斜率的表达式,随着i的增大斜率必然是递增的。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#define ll long long 
#define ull unsigned long long 
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e4 + 7;
int sumt[maxn], sumf[maxn];
int dp[1000007], q[maxn];
int main() {
	int n, s;
	cin >> n >> s;
	for (int i = 1; i <= n; i++) {
		scanf("%d %d", sumt + i, sumf + i);
		sumt[i] += sumt[i - 1];
		sumf[i] += sumf[i - 1];
	}
	int l = 1, r = 1;
	dp[0] = 0;
	q[1] = 0;
	for (int i = 1; i <= n; i++) {
		while (l < r && (dp[q[l + 1]] - dp[q[l]])  <= (sumt[i] + s)*(sumf[q[l + 1]] - sumf[q[l]]))  //斜率除法变乘法
			l++;
		dp[i] = dp[q[l]] - (sumt[i] + s)*sumf[q[l]] + sumt[i] * sumf[i] + s * sumf[n];
		while (l < r && (dp[i] - dp[q[r]])*(sumf[q[r]] - sumf[q[r - 1]]) <= (dp[q[r]] - dp[q[r - 1]])*(sumf[i] - sumf[q[r]]))
			r--;
		q[++r] = i;
	}
	cout << dp[n] << endl;
	return 0;
}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值