【poj1180】Batch Scheduling

题意:

给定 n n n个(≤10000)需依次完成的任务,你可以将它们分成若干段处理。每处理一个段,首先需要有 s s s的准备时间。处理一个段的费用为已花费的时间(从第一段任务的准备阶段开始计时)乘以段中每一个任务的权值 f i f_i fi(题解中记作 v [ i ] v[i] v[i])之和。求完成这些任务的最小费用。

题解

刚开始,很容易想到正着做。然而,尝试了一通,发现难度直线上升。于是,我们可以倒着看。
f [ i ] f[i] f[i]为完成 [ i , n ] [i,n] [i,n]的任务所需的最小费用, s 1 [ i ] s1[i] s1[i]为任务用时 t [ i ] t[i] t[i]的后缀和, s 2 [ i ] s2[i] s2[i]为任务用时 v [ i ] v[i] v[i]的后缀和。
则有:
f [ i ] = m i n { f [ j ] + ( s + s 1 [ i ] − s 1 [ j ] ) ∗ s 2 [ i ] ∣ i &lt; j &lt; = n + 1 } , f [ n + 1 ] = s 1 [ n + 1 ] = s 2 [ n + 1 ] = 0 f[i]=min\{f[j]+(s+s1[i]-s1[j])*s2[i]|i&lt;j&lt;=n+1\},f[n+1]=s1[n+1]=s2[n+1]=0 f[i]=min{f[j]+(s+s1[i]s1[j])s2[i]i<j<=n+1},f[n+1]=s1[n+1]=s2[n+1]=0
如何理解这个方程呢?我们画画图看一下(鼠标写字真心累):
在这里插入图片描述
f [ j ] f[j] f[j]已将 j j j段的时间和算了进来:
在这里插入图片描述
观察dp式:
f [ i ] = m i n ( f [ j ] + ( s + s 1 [ i ] − s 1 [ j ] ) ∗ s 2 [ i ] ) f[i]=min(f[j]+(s+s1[i]-s1[j])*s2[i]) f[i]=min(f[j]+(s+s1[i]s1[j])s2[i])
若将 f [ j ] f[j] f[j]拆开,然后运用乘法分配律:
f [ i ] = m i n { S [ i ] s 2 [ j ] + ( s 2 [ i ] − s 2 [ j ] ) ( s + s 1 [ i ] − s 1 [ j ] ) } , S [ i ] 表 示 完 成 i 以 后 的 任 务 的 总 时 间 f[i]=min\{S[i]s2[j]+(s2[i]-s2[j])(s+s1[i]-s1[j])\},S[i]表示完成i以后的任务的总时间 f[i]=min{S[i]s2[j]+(s2[i]s2[j])(s+s1[i]s1[j])}S[i]i
正好是f[i]的值。换句话说,我们可以将黑线段的时间和与蓝线段合并:
在这里插入图片描述
就得到了该段的总时间。
开始优化:
假设 j ′ &gt; j j&#x27;&gt;j j>j p ( j ′ ) &gt; p ( j ) p(j&#x27;)&gt;p(j) p(j)>p(j)(表示该决策点的优劣度,越大越优),则有:
f [ j ] + ( s + s 1 [ i ] − s 1 [ j ] ) ∗ s 2 [ i ] &gt; f [ j ′ ] + ( s + s 1 [ i ] − s 1 [ j ′ ] ) ∗ s 2 [ i ] f[j]+(s+s1[i]-s1[j])*s2[i]&gt;f[j&#x27;]+(s+s1[i]-s1[j&#x27;])*s2[i] f[j]+(s+s1[i]s1[j])s2[i]>f[j]+(s+s1[i]s1[j])s2[i]
整理得:
s 2 [ i ] ( s 1 [ j ′ ] − s 1 [ j ] ) &gt; f [ j ′ ] − f [ j ] s2[i](s1[j&#x27;]-s1[j])&gt;f[j&#x27;]-f[j] s2[i](s1[j]s1[j])>f[j]f[j]
Δ x = s 1 [ j ′ ] − s 1 [ j ] , Δ y = f [ j ′ ] − f [ j ] \Delta x=s1[j&#x27;]-s1[j], \Delta y=f[j&#x27;]-f[j] Δx=s1[j]s1[j],Δy=f[j]f[j],则 s 2 [ i ] Δ x &gt; Δ y s2[i]\Delta x&gt;\Delta y s2[i]Δx>Δy
由于在dp过程中, s 2 [ i ] s2[i] s2[i]依旧单增,所以我们需要维护一个下凸包。这快把我给坑死了

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int mn = 10005;
ll f[mn], s1[mn], s2[mn];
int q[mn], h, t;
inline ll dx(int i, int j)
{
    return s1[i] - s1[j];
}
inline ll dy(int i, int j)
{
    return f[i] - f[j];
}
int main()
{
    int n, m, i;
    scanf("%d%d", &n, &m);
    for(i = 1; i <= n; i++)
        scanf("%lld%lld", &s1[i], &s2[i]);
    for(i = n - 1; i; i--)
        s1[i] += s1[i + 1], s2[i] += s2[i + 1];
    q[1] = n + 1, h = t = 1;
    for(i = n; i; i--)
    {
        while(h < t && s2[i] * dx(q[h], q[h + 1]) < dy(q[h], q[h + 1]))
            h++;
        f[i] = f[q[h]] + (s1[i] - s1[q[h]] + m) * s2[i];
        while(h < t && dx(q[t], i) * dy(q[t - 1], q[t]) > dx(q[t - 1], q[t]) * dy(q[t], i))
            t--;
        q[++t] = i;
    }
    printf("%lld\n", f[1]);
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值