说话人分数评价技术(Cosine Similarity Scoring without Score Normalization Techniques)

本文介绍了说话人分数评价的一种新方法,该方法使用未经规范化处理的余弦相似度,训练速度更快且效果良好。公式涉及已注册说话人和测试说话人的向量表示,通过计算与均值和方差有关的得分,结合t-norm和s-norm的影响。文章提供代码实现。
摘要由CSDN通过智能技术生成

最近又看到一个说话人分数评价的技术(paper address here),与之前的AS-Norm相比,训练时间更快且效果也还行,这个说话人分数归一化底层仍然是余弦相似度,其实余弦相似度挺好的,下面来看本文提出的计算说话人分数的公式:

 score  ( w target  ′ , w test  ′

余弦相似度是衡量两个非零向量之间相似度的度量方法,它是通过计算两个向量在方向上的相似度来进行的,其值介于-1和1之间。两个向量的余弦相似度越高,表示它们之间的夹角越小,方向越相似。在文本分析、推荐系统等领域有广泛应用。 余弦相似度计算公式为两个向量的点积除以它们各自模长的乘积。假设我们有两个向量A和B,则它们之间的余弦相似度可以表示为: cos(θ) = (A · B) / (||A|| * ||B||) 其中,A · B表示向量A和B的点积,||A||和||B||分别表示向量A和B的模长。 以下是一个简单的C语言实现示例: ```c #include <stdio.h> #include <math.h> // 计算向量的模长 double vector_magnitude(double *vector, int size) { double sum = 0.0; for (int i = 0; i < size; i++) { sum += vector[i] * vector[i]; } return sqrt(sum); } // 计算两个向量的点积 double dot_product(double *vectorA, double *vectorB, int size) { double sum = 0.0; for (int i = 0; i < size; i++) { sum += vectorA[i] * vectorB[i]; } return sum; } // 计算余弦相似度 double cosine_similarity(double *vectorA, double *vectorB, int size) { double dot = dot_product(vectorA, vectorB, size); double magnitudeA = vector_magnitude(vectorA, size); double magnitudeB = vector_magnitude(vectorB, size); return dot / (magnitudeA * magnitudeB); } int main() { double vectorA[] = {1, 2, 3}; double vectorB[] = {4, 5, 6}; int size = 3; double similarity = cosine_similarity(vectorA, vectorB, size); printf("Cosine Similarity: %f\n", similarity); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值