自动驾驶芯片性能评价指标:DMIPS,TOPS

在这里插入图片描述
自动驾驶芯片的性能评价指标主要包括DMIPS(Dhrystone Million Instructions Per Second)和TOPS(Tera Operations Per Second)。这些指标用于衡量芯片在处理复杂计算任务时的性能和效率。以下是对这两个指标的详细解释:

1. DMIPS (Dhrystone Million Instructions Per Second)

DMIPS是衡量处理器性能的一个传统指标,特别适用于评估通用计算任务的处理能力。它基于Dhrystone基准测试程序,通过测量处理器每秒能执行多少百万条指令来反映处理器的计算能力。

特点和用途:
  • 计算能力:DMIPS主要用于衡量处理器的整数运算能力。
  • 比较性:提供了一个统一的标准,使得不同处理器之间的性能可以进行比较。
  • 自动驾驶应用:在自动驾驶中,DMIPS可用于评估处理器处理通用控制任务和算法的能力,如路径规划、传感器数据处理等。
示例:
  • 假设一个自动驾驶芯片的DMIPS值为5000,这意味着该芯片在运行Dhrystone基准测试程序时,每秒可以执行5000百万条指令。

2. TOPS (Tera Operations Per Second)

TOPS是衡量处理器(特别是用于人工智能和深度学习应用的处理器)性能的指标,表示处理器每秒能够执行的万亿次操作。TOPS主要用于评估处理器在执行复杂的矩阵运算和卷积神经网络(CNN)等人工智能任务时的性能。

特点和用途:
  • 人工智能性能:TOPS专门用于评估处理器在深度学习和神经网络推理中的性能。
  • 高吞吐量:高TOPS值表示处理器可以处理更多的数据并执行更多的计算任务,非常适合用于自动驾驶中的实时图像处理和目标检测。
  • 自动驾驶应用:在自动驾驶中,TOPS用于评估芯片处理传感器数据(如摄像头、雷达、激光雷达)和执行深度学习算法(如目标检测、语义分割等)的能力。
示例:
  • 假设一个自动驾驶芯片的TOPS值为20,这意味着该芯片每秒可以执行20万亿次操作,非常适合用于处理大规模并行计算任务,如实时图像处理和深度学习推理。

总结

  • DMIPS:主要用于衡量处理器的通用计算能力,适用于评估自动驾驶芯片在处理常规控制任务和算法时的性能。
  • TOPS:主要用于衡量处理器的人工智能计算能力,适用于评估自动驾驶芯片在处理深度学习和神经网络任务时的性能。

这两个指标结合在一起,可以全面评价自动驾驶芯片在不同应用场景下的性能,帮助选择合适的芯片以满足自动驾驶系统的高性能计算需求。
计算机视觉(CV)算法通常基于卷积神经网络(CNN),而CNN的核心计算操作是累积累加(Multiply-Accumulate, MAC)运算。由于这些操作在自动驾驶中的计算量极大,因此衡量视觉处理能力的指标TOPS(Tera Operations Per Second)变得非常重要。以下是对为什么用TOPS来评估视觉处理能力的详细解释:

1. 卷积神经网络(CNN)中的累积累加运算

卷积神经网络在处理图像和视频数据时,需要执行大量的卷积操作。每个卷积操作本质上是一个累积累加运算,即对输入特征图中的每个元素进行乘法运算,然后将结果累加。

MAC(Multiply-Accumulate)运算:
  • 乘法运算:每个卷积核权重与输入特征图对应位置的像素值相乘。
  • 累加运算:所有乘法结果累加,得到卷积操作的输出值。

2. TOPS与MAC运算的关系

TOPS衡量的是处理器每秒能够执行的万亿次操作数,包括乘法和累加运算。这与MAC运算完全对应,因为每次MAC运算包含一次乘法和一次累加。

高效评估:
  • 高吞吐量:TOPS直接反映处理器在执行大规模并行MAC运算时的性能,这是CNN中的主要计算任务。
  • 性能对比:高TOPS值表示处理器能够在较短时间内处理更多的卷积操作,提高CNN推理的速度和效率。

3. 视觉处理能力需要高TOPS

自动驾驶系统中的计算机视觉处理需要处理大量的图像和视频数据,实时进行物体检测、语义分割、车道检测等复杂任务。这些任务通常由CNN模型完成,而CNN模型计算量极大,需要高性能的计算资源。

视觉处理任务:
  • 物体检测:如YOLO、SSD等算法,需要在输入图像中实时识别和定位多个物体。
  • 语义分割:如SegNet、U-Net等算法,需要对输入图像进行像素级分类。
  • 车道检测:如LaneNet、SCNN等算法,需要实时检测车道线的位置和形状。

4. 实例分析

假设某自动驾驶芯片具有50 TOPS的计算能力,这意味着该芯片每秒可以执行50万亿次MAC运算。在处理一个包含大量卷积层的CNN模型时,这种高TOPS值可以显著加速模型的推理过程,实现实时响应和高精度检测。

5. 总结

视觉处理能力用TOPS来评估的原因在于:

  • CNN的核心计算操作是MAC运算,而TOPS直接反映了处理器执行MAC运算的能力。
  • 高TOPS值意味着处理器可以在短时间内处理大量的卷积操作,这是实现实时视觉处理所必需的。
  • TOPS为衡量处理器在深度学习和神经网络任务中的性能提供了一个统一的标准,便于不同处理器之间的比较。

因此,在自动驾驶系统中堆叠摄像头的同时,也需要堆叠具有高TOPS值的计算资源,以确保复杂的计算机视觉算法能够高效、实时地运行。

自动驾驶芯片中NPU(神经处理单元)工作流程及其性能评估。以下是进一步解释:

1. 数据读取和MAC阵列

数据读取:
  • 激活数据:每个周期从SRAM读取256字节的激活数据。
  • 权重数据:同时读取128字节的权重数据。
MAC阵列:
  • 结构:每个NPU包含96x96的MAC(Multiply-Accumulate)阵列。
  • 数据精度
    • 乘法运算使用8x8 bit的精度。
    • 加法运算使用32 bit的精度。

2. 功耗优化

  • 精度选择:选择8x8 bit乘法和32 bit加法的原因之一是功耗优化。浮点数运算尤其是32 bit浮点加法的功耗显著高于整数加法(32 bit浮点加法功耗约为32 bit整数加法的9倍)。

3. 计算性能

工作频率:
  • 频率:每个NPU在2GHz的工作频率下运行。
算力计算:
  • 单个NPU
    • 每个NPU的算力为36.86 TOPS(Tera Operations Per Second)。
  • FSD芯片
    • 整个FSD芯片的峰值算力为73.7 TOPS。

4. 计算流程

点积运算:
  • 在MAC阵列中进行点积运算(乘法和累加)。
数据转移:
  • 点积运算之后,数据被转移到激活硬件。
激活功能:
  • FSD支持多种激活函数,包括ReLU(Rectified Linear Unit)、SiLU(Sigmoid Linear Unit)和TanH(Hyperbolic Tangent)。
数据写回:
  • 每个周期将128字节的数据写回SRAM。

5. 并行和连续操作

  • 所有操作(读取、计算、激活和写回)同时且连续地进行,形成流水线,重复直到整个计算完成。

6. 总结

总体设计展示了高效的神经网络加速器架构,通过合理的数据流和高效的硬件配置(如MAC阵列和激活硬件)实现高性能和低功耗。通过8x8 bit乘法和32 bit加法的精度选择,有效地平衡了功耗和计算性能,使得FSD芯片能够在自动驾驶场景中实现实时、高效的计算能力。

实例分析

  • 在一个实际应用中,例如处理一个包含多个卷积层的CNN模型,每个周期需要从SRAM读取和写入数据,同时在MAC阵列中执行大量的MAC运算。这种高效的流水线设计确保了在2GHz的高频率下,每个NPU能够达到36.86 TOPS的计算性能,从而实现整个FSD芯片的峰值算力为73.7 TOPS。

这种设计和架构在自动驾驶系统中至关重要,能够支持复杂的计算机视觉任务和实时的决策过程。

自动驾驶芯片中NPU(神经处理单元)工作流程及其性能评估。以下是进一步解释:

  1. 数据读取和MAC阵列
    数据读取:
    激活数据:每个周期从SRAM读取256字节的激活数据。
    权重数据:同时读取128字节的权重数据。
    MAC阵列:
    结构:每个NPU包含96x96的MAC(Multiply-Accumulate)阵列。
    数据精度:
    乘法运算使用8x8 bit的精度。
    加法运算使用32 bit的精度。

  2. 功耗优化
    精度选择:选择8x8 bit乘法和32 bit加法的原因之一是功耗优化。浮点数运算尤其是32 bit浮点加法的功耗显著高于整数加法(32 bit浮点加法功耗约为32 bit整数加法的9倍)。

  3. 计算性能
    工作频率:
    频率:每个NPU在2GHz的工作频率下运行。
    算力计算:
    单个NPU:
    每个NPU的算力为36.86 TOPS(Tera Operations Per Second)。

FSD芯片:
整个FSD芯片的峰值算力为73.7 TOPS。

  1. 计算流程
    点积运算:
    在MAC阵列中进行点积运算(乘法和累加)。
    数据转移:
    点积运算之后,数据被转移到激活硬件。
    激活功能:
    FSD支持多种激活函数,包括ReLU(Rectified Linear Unit)、SiLU(Sigmoid Linear Unit)和TanH(Hyperbolic Tangent)。
    数据写回:
    每个周期将128字节的数据写回SRAM。
  2. 并行和连续操作
    所有操作(读取、计算、激活和写回)同时且连续地进行,形成流水线,重复直到整个计算完成。
  3. 总结
    总体设计展示了高效的神经网络加速器架构,通过合理的数据流和高效的硬件配置(如MAC阵列和激活硬件)实现高性能和低功耗。通过8x8 bit乘法和32 bit加法的精度选择,有效地平衡了功耗和计算性能,使得FSD芯片能够在自动驾驶场景中实现实时、高效的计算能力。
    实例分析
    在一个实际应用中,例如处理一个包含多个卷积层的CNN模型,每个周期需要从SRAM读取和写入数据,同时在MAC阵列中执行大量的MAC运算。这种高效的流水线设计确保了在2GHz的高频率下,每个NPU能够达到36.86 TOPS的计算性能,从而实现整个FSD芯片的峰值算力为73.7 TOPS。
    这种设计和架构在自动驾驶系统中至关重要,能够支持复杂的计算机视觉任务和实时的决策过程。

可以通过比喻来帮助理解这个复杂的NPU工作流程。我们可以把整个计算过程比作一个高效的工厂流水线,每个部分都有其特定的角色和职责。

1. 数据读取和MAC阵列

数据读取:
  • 激活数据:就像工厂每天需要从仓库里取出原材料(256字节的激活数据)。
  • 权重数据:同时也从另一个仓库里取出辅助材料(128字节的权重数据)。
MAC阵列:
  • MAC阵列:工厂有一个大的生产车间(96x96的MAC阵列),每个工作站负责一个特定的操作(乘法和加法)。
  • 数据精度:在这里,乘法是由8位乘以8位的机器完成,而加法由32位的机器完成,就像用不同的工具完成不同的任务。

2. 功耗优化

  • 精度选择:选择8x8 bit乘法和32 bit加法的原因是为了节省能源(功耗)。就像工厂选择效率高、耗电低的机器来节省电费。

3. 计算性能

工作频率:
  • 频率:工厂的生产线每天24小时高效运行,类似于NPU在2GHz的高频率下运行。
算力计算:
  • 单个NPU:一个工作站每天可以完成很多任务(36.86 TOPS)。
  • FSD芯片:整个工厂的所有工作站加起来的生产能力非常强(73.7 TOPS)。

4. 计算流程

点积运算:
  • 点积运算:在生产车间里,原材料和辅助材料经过机器处理,变成中间产品(点积运算)。
数据转移:
  • 数据转移:然后,中间产品被转移到另一个车间(激活硬件)进行进一步处理。
激活功能:
  • 激活功能:不同的车间负责不同的加工步骤(ReLU、SiLU和TanH等激活函数)。
数据写回:
  • 数据写回:最终,处理好的产品被送回仓库(每周期将128字节的数据写回SRAM)。

5. 并行和连续操作

  • 并行和连续操作:就像工厂的流水线,每个工作站同时进行不同的步骤,整个过程是连续进行的,一直重复直到所有原材料被处理完。

6. 总结

这整个过程展示了一个高效的流水线工厂,通过合理的分工和高效的机器配置(MAC阵列和激活硬件),实现高性能和低功耗。

实例分析

想象一个面包厂:

  • 每天从仓库取面粉(激活数据)和酵母(权重数据)。
  • 面粉和酵母在生产线上的每个工作站(MAC阵列)被处理(乘法和加法),变成面团。
  • 面团被送到不同的车间(激活硬件)发酵和烘焙(激活函数)。
  • 最后,烤好的面包被送回仓库(写回SRAM)。
  • 整个过程高效且连续地进行,直到所有面粉和酵母被处理完。

这种高效的设计确保了工厂(NPU)能够在24小时内生产出大量的面包(高计算性能),同时保持较低的能源消耗(功耗优化)。

在每个周期中,将在整个MAC阵列中广播输入数据的底行和权重的最右列。每个单元独立执行适当的乘法累加运算。在下一个循环中,将输入数据向下推一行,而将权重网格向右推一行。在整个数组中广播输入数据的最底行和权重的最右列,重复此过程。单元继续独立执行其操作。全点积卷积结束时,MAC阵列一次向下移动一行96个元素,这也是SIMD单元的吞吐量。

介绍了如何在MAC阵列中执行点积运算。为了更好地理解,我们可以使用一个简单的比喻:一个大规模的印刷工厂,其中每个单元负责一部分印刷任务,而所有单元协同工作以完成整个印刷过程。

比喻解释

1. MAC阵列和广播机制

假设你有一个印刷工厂,每个工人(MAC单元)都有自己的印刷机(负责乘法累加运算)。每次印刷工序会按顺序分配任务给工人,任务包括底行的输入数据和最右列的权重数据。

2. 每个周期的工作

每个周期,工厂的工作流程如下:

  • 输入数据的底行:就像给工人分发一行文字,所有工人都知道当前要印刷的底行内容。
  • 权重数据的最右列:就像给工人分发一个模板,所有工人都知道当前的印刷模板是什么。
  • 乘法累加运算:工人们用分发的文字和模板各自印刷,结果累加到他们的纸上。
3. 数据和权重的移动

每个周期结束后,工厂会进行如下操作:

  • 输入数据向下推一行:就像把印刷的底行内容向下移动到下一行,准备下一行的印刷。
  • 权重数据向右推一列:就像把印刷的模板向右移动到下一列,准备下一列的印刷。
4. 重复过程

整个过程会不断重复,直到所有内容和模板都被印刷完:

  • 每个周期工人们都会接收到新的底行内容和新的模板列,然后继续印刷和累加。
  • 这一过程一直进行,直到所有内容和模板都被处理完毕。

完整的点积卷积过程

  • 点积卷积结束:当所有行和列都处理完毕,印刷完成。
  • MAC阵列移动:MAC阵列中的每个单元完成一次全点积卷积,就像工人们完成一整页的印刷。

SIMD单元吞吐量

  • SIMD单元:单指令多数据(Single Instruction, Multiple Data)单元的吞吐量就像工厂中每次印刷完成的页数。MAC阵列每次向下移动一行96个元素,相当于一次完成96行的印刷任务。

总结

通过这个比喻,MAC阵列中的每个单元就像印刷工厂的工人,每个周期中广播输入数据的底行和权重的最右列,所有工人协同工作完成乘法累加运算。随着输入数据和权重数据的移动,整个印刷过程不断进行,最终完成所有任务。这种高效的协同工作方式确保了计算过程的高吞吐量和高效性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空间机器人

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值