【深度学习——CNN】训练集准确率和测试集准确率都是1(train_acc:1.000 ,val_acc=1.000)是怎么回事?

当CNN训练集和验证集准确率都为1.000时,可能原因包括数据标准化、测试集过少、标签错误、batchsize设置和过拟合等。数据标准化和归一化是预处理关键,但正确设置和应用至关重要。标签错误可能导致模型表现异常,调整batchsize和网络复杂度可防止过拟合。
摘要由CSDN通过智能技术生成

2020/5/8——5/9 参考Stack Overflow相关问题下面的回答:

stackoverflow_What does it mean when training and validation accuracy are 1.000 but results are still poor?

可能性1:Did you scale the data?(data normalization数据标准化

1.1数据标准化与数据归一化定义辨析

深度学习图像分类:首先要对图像做数据预处理——数据标准化和数据归一化。各种博客各种定义说法我都蒙了,看了这个回答觉得说的最清楚。主要内容如下:

知乎_归一化标准化辨析——nulltoall的回答

“首先要明确一下,标准化( standardization)和归一化(normalization)在ML中的概念和统计学中不太一样,容易引发歧义。两者都是特征缩放(Feature Scaling)的方法。
标准化(Standardization)又叫做Z-score normalization (是的,其实它也是一种normalization),公式是这样的

归一化(normalization)又叫做 Min-Max scaling,这个名字不容易引起歧义。它会把数据的范围限制在0到1, 而Standardization则不会把数据限定在特定范围。Standa

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值