【深度学习】【卷积神经网络CNN】验证集准确率val_acc保持不变?过拟合?早停earlystoping的使用。

本文记录了在深度学习模型训练中遇到的验证集准确率val_acc保持不变的情况,探讨了可能的原因,包括过拟合的迹象,以及如何通过早停策略(earlystopping)来防止过拟合。同时,提出了检查数据、调整学习率和batch size等解决办法,并分享了降低学习率后模型性能提升的经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020/5/9 日记录

今天解决了acc 和val_acc一直为1.000的奇怪问题之后(原来是label标错了o(╥﹏╥)o),终于走上了正式的调参之路。
先看一下训练结果:在这里插入图片描述
可以看到:
1.验证集准确率val_acc>训练集准确率train_acc。查资料,属于正常情况,不过也有可能有一些问题,先观察着。
2. 随着epoch迭代,验证集准确率val_acc保持不变了!这不就是传说中过拟合的征兆吗?引用另一篇博客的话 :“我们之前把数据集切分为训练集,测试集和验证集。验证集就是用来检测模型overfitting。
一旦在验证集上,准确性不在变化(收敛了),那么我们就停止训练。”

在程序中已经设置了早停earlystoping ,是这样写的:

  # 是否需要早停,当val_loss一直不下降的时候意味着模型基本训练完毕,可以停止
    early_stopping = EarlyStopping(
                            monitor='val_loss', 
                            min_delta=0, 
                            patience=10, 
                            verbose=1
                        )

是以val_loss为监测标准的。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值