学习笔记|数据结构——排序

学习笔记|数据结构——排序

分析排序算法好坏
1、算法执行效率
最好情况、最坏情况、平均情况时间复杂度,同时要给出不同情况对应的原始数据是如何的
时间复杂度的系数、常数、低阶,当排序规模很小时,要把上述几项考虑进来
比较次数和交换次数
2、排序算法内存消耗
原地排序算法,特指空间复杂度是O(1)的排序算法
3、排序算法的稳定性
如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变,即称为稳定性
稳定性算法的实际应用:在电商订单系统中,希望按照金额大小进行排序,对同等金额的订单按下单时间进行排序,这时,我们可以先对订单按下单时间排序,再用稳定性排序算法按照金额大小进行排序
冒泡排序
每次冒泡排序只会操作相邻两个数据,看是否满足大小关系,如果不满足就让它们交换。一次冒泡至少会让一个元素移动到它应该在的位置,重复n次就完成了m个数据的排序工作
冒泡排序示意图
冒泡排序是原地排序算法
冒泡排序是稳定的排序算法
冒泡排序的最好情况时间复杂度是O(n),此时只需要一次冒泡操作就结束
最坏情况时间复杂度是O(n^2)。此时刚好是倒序排列,需要进行n次冒泡操作
平均时间复杂度为O(n^2)
有序度
数组中具有游戏关系的元素对的个数
数学表达式:a[i] <= a[j],如果i<j
有序度描述
完全有序的数组的有序度叫做 满有序度 大小为 n*(n-1)/2
逆序度定义刚好跟有序度定义相反,a[i]>a[j],如果i<j
逆序度=满有序度-有序度

冒泡排序包含比较和交换两个操作,且对于同一序列,交换次数是固定的,为逆序度

插入排序
将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。
插入排序的核心思想就是取未排序区间中的元素,在已排序区间中找合适的插入位置将其插入,并保证已排序区间数据一直有序,重复这个过程直到未排序空间中元素为0,算法结束
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动
将一个数据a插入到已排序区间时,需要拿a与已排序的元素依次比较大小,找到插入点后,将插入点之后的元素顺序往后移动一位,将待插入元素 插入到腾出的位置上
插入排序描述
对于一个给定的初始序列,移动操作的次数总是固定的,等于逆序度
插入排序是原地排序算法
插入排序是稳定排序算法
插入排序最好时间复杂度为O(n),此时序列已经是有序的,不需要搬移任何数据。从尾到头在有序数据组里面查找插入位置,发现根本不需要移动
最坏时间复杂度为O(n2),此时序列是倒序的
平均时间复杂度是O(n2),因为在一个数组中插入一个数据平均时间复杂度是O(n),那插入n个数则是O(n2)

选择排序
将数组分为两个区间,已排序区间和未排序区间。选择未排序区间中最小的元素,将其放到已排序区间的末尾
选择排序
选择排序是原地排序算法
选择排序不是稳定排序算法
选择排序最好时间复杂度为O(n2
最坏时间复杂度为O(n2)
平均时间复杂度是O(n2),

为什么一般采用插入排序而不是冒泡排序
首先插入排序和冒泡排序时间复杂度都是O(n2
元素操作次数都是原始数据的逆序度
从代码实现来看

//冒泡排序中的交换操作
if(a[i]>a[i+1]){
	int temp = a[i];
	a[i] = a[i+1];
	a[i+1] = temp;
}

//插入排序中的移动操作
if(a[i]> value){
	a[i+1] = a[i];
}else break;

冒泡排序交换数据需要三个步骤,插入排序只需要一个步骤,而两种算法需要交换的次数均为逆序度,为固定值,如果我们想将性能做到极致,首选插入排序
三种排序方式,特性比较
数据结构选用数组实现或者选用链表实现,有区别吗
若只考虑改变节点位置,而不改变节点值时,时间复杂度和空间复杂度无明显变化。当使用冒泡排序时,时间复杂度系数会变大(在交换操作时,链表比较麻烦),插入排序系数会减小(使用链表找到位置可以直接插入,不再需要后移元素),选择排序无明显变化
归并排序
1、归并排序的思想:如果要排序一个数组,先把数组从中间分成前后两个部分,然后对前后两部分分别排序,再将排好的两部分合并在一起,这样整个数组就是有序得了
2、递推公式:merge_sort(p…r) = merge(merge_sort(p…q),merge_sort(q+1…r))
3、终止条件:p>=r 将不再分解
其中q等于(p+r)/2
4、结合代码的理解:首先将数组从中部斩断,将前边的再斩断,一直将前边的斩断到只有一个元素,这时候调用合成函数,将最前边的单个元素数组和它后边一个的单个数组 按大小合成一个大小为2的数组,然后再考虑大小为2的数组对应的后边那个数组,再对它进行斩断,还是先顾前边的,再顾后边的,这样依次退出,直到完成整个排序
5、合并函数:用两个游标i和j,分别指向A[p…q]和A[q+1…r]的第一个元素。比较这两个元素的A[i]和A[j],如果A[i]<=A[j],就把A[i]放到临时数组tmp,并且i++后移一位,否则将A[j]放入tmp,j后移一位。知道其中一个子数组中所有数据都放到临时数组中,再讲另一个数组中剩余的数据依次加入到临时数组的末尾,最后再把临时数组tmp中的数组拷贝到原数组A[p…r]中。
6、归并排序的性能:稳定排序算法、非原地排序算法
时间复杂度为O(nlogn),且最好、最坏、平均时间复杂度都一样
空间复杂度为O(n)
尽管在每次合并操作的时候,都要申请额外的内存空间,但在合并完成之后,临时开辟的空间就被释放掉了,在任意时刻只有一个函数在执行,也就只会有一个临时的内存空间在使用,临时内存空间最大不会超过n个数据的大小,所以空间复杂度为O(n)。
快排
1、快排思想:选择数组p到r之间任意一个数据作为pivot(分区点),遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放大右边,将pivot放在中间。数组p到r之间的数据就分成了三个部分,前面都是小于pivot的,后边都是大于pivot的。用递归排序下标从p到q-1之间的数据,以及q+1到r之间的数据,直到区间缩小为1,就说明所有数据都是有序了
2、递推公式:quick_sort(p…r) = quick(quick_sort(p…q),quick_sort(q+1…r))
3、终止条件:p>=r 将不再分解
partition()分区函数实际就是随机选取一个元素作为pivot,一般情况下,选择p到r区间的最后一个元素,然后对A[p…r]分区,函数返回pivot下标
4、分区函数的思想:通过游标i把A[p…r-1]分成两部分。A[p…i-1]的元素都是小于pivot的,称它为已处理区间,A[i…r-1]是未处理区间。每次都是从未处理区间A[i…r-1]中取一个元素A[j],与pivot对比,如果小于pivot,则将其加入到已处理区间的尾部,也就是A[i]的位置,当j指向最后一个元素,也就是pivot的时候,只需要将A[i]与A[j]交换,就可以在时间复杂度为O(1)的情况下将pivot放到A[i]的位置,平常情况交换时时间复杂度也是O(1)
5、快排的性能:非稳定性排序算法,原地排序算法
最好、平均时间复杂度为O(nlogn),最坏时间复杂度为O(n2),对应的数据情况是一个完全有序的数组,每次都选择最后一个当pivot,这时候得到的两个分区是不均等的,我们需要进行n次分区,才能完成快排

快排和归并总结
1、归并排序的重点在于记住递推公式,和merge()合并函数
2、快排的重点在于记住递推公式,和partition()分区函数
3、归并排序算法是一种任何情况下时间复杂度都一样的排序算法,但是归并排序算法不是原地排序算法,空间复杂度是O(n),因此它没有快排应用广泛,快排的空间复杂度是O(1),时间复杂度一般情况下是O(nlogn),极少情况下是O(n2

代码地址:https://github.com/lzij/data-structure_learning/blob/main/data_structure/sorts/bubblesorts.java

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值