- 博客(21)
- 收藏
- 关注
原创 pytorch笔记
def tidu(): x = torch.tensor([3.0,5.0], requires_grad=True) opt=torch.optim.Adam([x],lr=1e-3) for step in range(5000): opt.zero_grad() y = f(x) y.backward() if step % 100 == 0: print(step,x.tolist(),.
2022-01-13 22:48:05
473
原创 vim笔记
给函数绑定快捷键 注释和取消注释 function Annotation() if getline('.')[0] == "#" normal 0x else normal I# endif endfunc nnoremap <F2> :call Annotation()<CR> 配置括号自动补全 inoremap ' '' inoremap " ""<ESC>i inoremap ( ()<ESC>i inor
2021-05-18 18:01:45
148
原创 vim笔记
自定义快捷键 编辑~/.vimrc文件 //快捷注释 <CR>表换行 :map <F2> :s/^/#/ <CR> //显示该文件全路径 :map <F7> :echo expand('%:p') <CR> :map <F4> :s/^#//<CR>
2021-05-07 15:42:33
148
原创 C++笔记
数组名做函数参数 数组名做函数参数,函数的形参会退化为指针: void test2(int arr[]){ cout << "整个数组所占内存空间为: " << sizeof(arr) << endl; cout<<"int *: "<<sizeof(int*)<<endl; int main(int argc, char **argv) { int arr[10] = { 1,2,3,4,5,6,7,8,9,10 }; t
2020-12-03 23:25:11
193
原创 CNN代码实现
卷积层 卷积公式 Out[cho][r][c]=∑cho=0CHout∑chi=0CHin∑r=0R∑c=0C∑kr=0K∑kc=0KIn[chi][S∗r+kr][S∗c+kc]∗W[cho][chi][kr][kc]Out[cho][r][c]= \sum \limits_{cho=0}^{CHout}\sum \limits_{chi=0}^{CHin}\sum \limits_{r=0}^{R}\sum \limits_{c=0}^{C}\sum \limits_{kr=0}^{K}\sum \li
2020-11-22 14:52:02
2566
原创 coding
package com.cn.algraph; import java.util.Arrays; public class cnn_2v { public static void main(String[] args) { // TODO Auto-generated method stub int a[][] = { { 1, 0, 1, 2, 1 }, { 0, 2, 1, 0, 1 }, { 1, 1, 0, 2, 0 }, { 2, 2, 1, 1, 0 }, { 2, 0, 1,
2020-11-08 23:43:12
89
原创 Linux命令笔记
gg = 1G 首行 shift + g = G 末行 ^ = 0 =home 行首 $ = end 行尾 都可以放在命令中执行 宏模式的使用 块选择模式 适合行首和行尾添加字符 . 重复上一次操作,常用 1. 在每行开头和末尾添加字符 块选择方法、宏录制、正则替换 2、删除每行特定字符后面所有字符 宏录制常用 eg. /a/b/c /b/c/dd /...
2019-06-22 17:15:01
137
原创 爬取boss直聘目标职位信息
import requests from lxml import etree import pandas as pd class spider: def __init__(self, word, begin_page, end_page): self.word = word self.begin_page = begin_page sel...
2019-04-21 11:58:13
229
原创 Python读文件乱码解决方法
方法1:指定编码类型 encoding=? 文件中的中文字符默认是以encoding='gbk’打开的,若文件编码不是gbk编码就会报错。 其中a.txt编码是utf-8 with open('a.txt',encoding='utf-8') as file: print(file.read()) 方法2:以bytes类型读取 with open('a.txt','rb') as fil...
2019-04-05 18:22:57
507
转载 决策树之ID3算法
ID3算法 ID3算法的核心思想是通过计算属性的信息增益来选择决策树各级节点上的分类属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。其基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据...
2019-03-22 09:37:54
364
转载 解决高偏差和高方差(过拟合和欠拟合)
获得更多的训练样本——解决高方差 尝试减少特征的数量——解决高方差 尝试获得更多的特征——解决高偏差 尝试增加多项式特征——解决高偏差 尝试减少正则化程度λ——解决高偏差 尝试增加正则化程度λ——解决高方差 ...
2019-02-27 17:16:59
1652
转载 jupyter中matplotlib显示设置
%matplotlib 图像弹出窗口显示 %matplotlib inline jupyter中显示
2019-02-25 11:01:13
2407
转载 jupyter notebook 绘图中文显示乱码
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False
2019-02-25 10:48:56
1113
原创 使用管道流简化机器学习代码
# --encoding:utf-8 -- import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_...
2019-02-23 15:07:39
191
原创 机器学习简单构建流程代码
# --encoding:utf-8 -- import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_...
2019-02-23 15:02:54
400
原创 Python中zip的用法
zip可以将多个列表、元组或其它序列成对组合成一个元组列表: 压缩 seq1 = ['foo', 'bar', 'baz'] seq2 = ['one', 'two', 'three'] zipped = zip(seq1, seq2) list(zipped) [('foo', 'one'), ('bar', 'two'), ('baz', 'three')] 解压缩 e=list(zippe...
2019-02-22 23:37:47
231
原创 Python中enumerate的用法
li=[1,2,3] en=enumerate(li) list(en) [(0, 1), (1, 2), (2, 3)] for a,b in enumerate(li): print(a,b) 0 1 1 2 2 3
2019-02-22 23:19:26
366
原创 python拆包
python拆包 def run(a,*b): print(a) print('未拆包') print(b) print('拆包') print(*b) #等同于 c,d=*b run(1,2,3) 1 未拆包 (2, 3) 拆包 2 3
2019-02-22 23:11:00
356
原创 pandas如何快速添加一行?
pandas添加一行数据 pandas添加一列很容易,添加行稍微麻烦一点。 方式一: df2=pd.DataFrame([[33,44,55]],columns=['a','b','c']) df1 a b c 0 1 4 7 1 2 5 8 2 3 6 9 df2=pd.DataFrame([[33,44,55]],columns=['a','b','c']) df2 a b ...
2019-02-22 22:58:32
7649
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人