机器学习
dataDance
这个作者很懒,什么都没留下…
展开
-
解决高偏差和高方差(过拟合和欠拟合)
获得更多的训练样本——解决高方差尝试减少特征的数量——解决高方差尝试获得更多的特征——解决高偏差尝试增加多项式特征——解决高偏差尝试减少正则化程度λ——解决高偏差尝试增加正则化程度λ——解决高方差...转载 2019-02-27 17:16:59 · 1639 阅读 · 0 评论 -
手推机器学习算法
手推SVM手推EM手推BP算法转载 2019-03-08 08:52:52 · 549 阅读 · 0 评论 -
特征工程
转载 2019-02-25 13:19:17 · 183 阅读 · 0 评论 -
使用管道流简化机器学习代码
# --encoding:utf-8 --import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScaler, OneHotEncoderfrom sklearn.linear_...原创 2019-02-23 15:07:39 · 177 阅读 · 0 评论 -
机器学习简单构建流程代码
# --encoding:utf-8 --import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScaler, OneHotEncoderfrom sklearn.linear_...原创 2019-02-23 15:02:54 · 389 阅读 · 0 评论 -
决策树之ID3算法
ID3算法ID3算法的核心思想是通过计算属性的信息增益来选择决策树各级节点上的分类属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。其基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据...转载 2019-03-22 09:37:54 · 357 阅读 · 0 评论