POJ - 3415 (Common Substring)

题意:求两个字符串长度不小于 K 的公共子串个数

 

分析:将两个字符串 A 和 B 连接起来,中间用其它字符隔开,求一遍后缀数组,根据 sa 数组的性质,设sa[l...r]为连续一段

公共子串长度>=K的后缀,那么对于某个 i (l<=i<=r)  若 sa[i] 属于 A ,则它的贡献可以是:

\sum_{j=l+1}^{i-1}(lcp(i,j)-K+1) (sa[j]\in B)   

对于每个 A ,我们都这样统计一遍,则我们计算了所有的按照sa数组顺序,B 在前 A 在后,两者子串大于等于 K 的情况。

现在还缺少 B 在后 A在前的情形,同理,对于某个 i (l<=i<=r)  若 sa[i] 属于 B ,则它的贡献可以是:

\sum_{j=l+1}^{i-1}(lcp(i,j)-K+1) (sa[j]\in A)

这样子所有的方案就出来了,但是对于每次贡献的计算,暴力往前找累加答案肯定不行,需要优化,我们知道sa[i]和sa[j](假设i<j) 的最长公共子串 lcp(i,j)=min(ht[i+1...j]),那么 j 不变的情况下 lcp(i+1...j-1,j) 肯定是非递减的,那么就可以用单调栈维护这么一个非递减序列,对于重复元素就压缩一下记录数量即可 (可能有点抽象,可以看代码理解Q_v_Q)

 

代码:

#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define fi first
#define sd second
typedef pair<int,int> P;
typedef long long ll;
const int N = 2E5+10;

char a[N],b[N];
int n,s[N],sa[N],rk[N],oldrk[N<<1];
int cnt[N],ht[N],px[N],id[N];

bool cmp(int x,int y,int w){
	return oldrk[x]==oldrk[y] && oldrk[x+w]==oldrk[y+w];
}

void da(int s[],int n,int m){
	int i,p=0,w,k;
	
	for(i=1;i<=n;i++) ++cnt[rk[i] = s[i]];
	for(i=1;i<=m;i++) cnt[i] += cnt[i-1];
	for(i=n;i>=1;i--) sa[cnt[rk[i]]--] = i;
	
	for(w=1;w<n;w<<=1,m=p){
		for(p=0,i=n;i>n-w;i--) id[++p]=i;
		for(i=1;i<=n;i++)
		    if(sa[i]>w) id[++p]=sa[i]-w;
		memset(cnt,0,sizeof(cnt));
		for(i=1;i<=n;i++) ++cnt[px[i] = rk[id[i]]];
		for(i=1;i<=m;i++) cnt[i] += cnt[i-1];
		for(i=n;i>=1;i--) sa[cnt[px[i]]--] = id[i];
		memcpy(oldrk,rk,sizeof(rk));
		
		for(p=0,i=1;i<=n;i++)
		    rk[sa[i]]=cmp(sa[i],sa[i-1],w)?p:++p;
	}
	
	for(i=1,k=0;i<=n;i++){
		if(k) --k;
		while(s[i+k]==s[sa[rk[i]-1]+k]) ++k;
		ht[rk[i]]=k;
	} 
}

P H[N];  //单调栈,sd 记录非递减序列值,fi 记录数量;
int K,Y;

void work(){
	ll ANS=0;
	ll tot=0,len=0;
	for(int i=2;i<=n;i++){
		if(ht[i]<K) tot=len=0;
		else{
			int cnt=0;
			if(sa[i-1]<Y) tot+=ht[i]-K+1,cnt++;
			while(len>0&&H[len].sd>=ht[i]){    //相当于统计相同值的数量;
				P top=H[len]; len--;
				tot-=(top.sd-ht[i])*top.fi;
				cnt+=top.fi;
			}
			H[++len]=P(cnt,ht[i]);
			if(sa[i]>Y) ANS+=tot;
		}
	} 
	tot=0,len=0;
	for(int i=2;i<=n;i++){
		if(ht[i]<K) tot=len=0;
		else{
			int cnt=0;
			if(sa[i-1]>Y) tot+=ht[i]-K+1,cnt++;
			while(len>0&&H[len].sd>=ht[i]){
				P top=H[len]; len--;
				tot-=(top.sd-ht[i])*top.fi;
				cnt+=top.fi;
			}
			H[++len]=P(cnt,ht[i]);
			if(sa[i]<Y) ANS+=tot;
		}
	} 
	printf("%lld\n",ANS);
}

int main()
{
	while(scanf("%d",&K)&&K){
		memset(cnt,0,sizeof(cnt));
		scanf("%s%s",a+1,b+1);
		n=strlen(a+1);
		for(int i=1;i<=n;i++) s[i]=a[i];
		Y=n+1;
		n=strlen(b+1);
		for(int i=1;i<=n;i++) s[i+Y]=b[i];
		s[Y]='#';
		n+=Y;
		da(s,n,128);
		work();
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值