- 博客(3)
- 收藏
- 关注
原创 借助GPT4理解机器学习分类报告在量化投资中的实际应用与解读
如果我们的数据中有90%的样本是盈利的,那么一个总是预测盈利的简单模型的正确率就可以达到90%,但这样的模型显然没有实际的预测能力。你的理解是完全正确的。在你的交易环境中,精度高的模型会产生更少的假阳性预测(即,预测股票会上涨,但实际上并未上涨),而召回率高的模型会正确识别更多实际的阳性实例(即,它不会错过太多赚钱的机会)。然而,需要注意的是,适合的评估方法也会根据具体问题和数据的特性而有所不同,可能需要结合其他的评估指标(如:利润、风险、回撤等)才能更好的评估交易模型的性能。
2023-07-10 16:42:41 136 1
原创 借助GPT4深入理解Backtrader的数据处理、指标计算及防止未来函数问题
**学习总结****首先,我们了解到在`backtrader`中,当我们在策略类(`bt.Strategy`的子类)中创建指标而不指定数据系列(如`close`、`high`等)时,`backtrader`默认会使用`close`价格进行计算。这种设计使得策略编写更为简洁,并且符合大多数金融指标以收盘价为基础的计算方式。****然后,我们探讨了在`backtrader`中指标的计算方式。虽然在`__init__()`方法中定义了指标计算的逻辑和交易信号的生成规则,但实际的计算过程是在每次`ne
2023-07-10 16:12:37 240 1
原创 什么是量化
“锤子线"又名"锤头线",是经典K线形态之一。"锤头线"出现后第二天是看涨还是看跌?这种观点究竟该如何验证?网络上很多鱼龙混杂的大师,喜欢随机抽出几段支撑自己观点K线图,然后对于某种K线形态之后的走势侃侃而谈。但是其逻辑上的缺陷是,这种随便找几张K线图来证明自己观点的过程,犯了一个小数法则的错误。举个例子,假如某K线形态在上证指数上出现了100次,其中97次一天后是看跌,3次看涨...
2020-04-10 20:14:05 9773
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人