Series创建
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
两种创建方式:
由列表或numpy数组创建
默认索引为0到N-1的整数型索引
s = Series([1,2,3])
nd = np.array([1,2,3])
s = Series(nd)
#通过index参数指定索引
s = Series([1,2,3,4],index=['a','b','c','d'])
由字典创建
s = Series({'a':1,'b':2})
Series索引和切片
#loc 都是左闭右闭 iloc都是左闭右开
显式索引:(使用.loc[](推荐))
#左闭右闭
s["pi"] s.loc["a"]
#float
s[["a","pi"]] s.loc[["a"]]
s.loc["a":"g"]
#左闭右闭
s.iloc[0:2]
#左闭右开
隐式索引:(使用.iloc[](推荐))
#左闭右开 [行数]
s[0]
s.iloc[0]
s.iloc[[1,2]]
s.iloc[0:2]
Series的基本概念
series的属性
s.shape s.index
s.size s.values
Series的样式 head(),tail()
s.head(2)
s.tail(2)
检测缺失数据
#重点
pd.isnull(s)
#返回的是boolean 如果为空 true 不为空 false
ind = s.isnull()
ind
#获取了数据是否为空, 进行检索,如果数据为空,就赋值
s[ind] = 1000
name属性
s.name = "Python"
Series的运算
适用于numpy的数组运算也适用于Series
Series之间的运算
A = pd.Series([2,4,6],index=[0,1,2])
B = pd.Series([1,3,5],index=[1,2,3])
display(A,B)
在运算中自动对齐不同索引的数据
如果索引不对应,则补NaN
注意:要想保留所有的index,则需要使用.add()函数
s3 = s1.add(s, fill_value=0)