//---连通图的关节点寻找算法---//
//连通图的深度优先生成树中关节点特性:
//1.若生成树的根有两棵或两棵以上的子树,则此根顶点必为关节点,因为图中不存在联结不同子树中顶点的边;
//2.若生成树中某个非叶子顶点,其某棵子树的结点均没有指向该结点的祖先的回边,则该结点必为关节点。
#include <stdio.h>
#include <stdlib.h>
#include "AdjacencyList.h"
typedef enum {FALSE,TRUE}Boolean;
int count; //计数已访问的点的数量,用于判断根结点是否为关节点
int DFN[MAX_VERTEX_NUM]; //深度优先搜索树中点i访问的顺序
int LOW[MAX_VERTEX_NUM]; //深度优先搜索树中点i所能回溯到的最浅层的点(如不能回溯,则为自己)
void FindArticul(ALGraph G); //寻找关节点算法
void DFSArticul(ALGraph G,int v); //从v点开始深度优先遍历寻找关节点
int main()
{
ALGraph *G;
G=(ALGraph *)malloc(sizeof(ALGraph));
CreateGraph(G);
int i,j;
printf("图结构(邻接表表示):\n");
for(i=0;i<G->vexnum;i++)
{
ArcNode *p;
p=(ArcNode *)malloc(sizeof(ArcNode));
p=G->vertices[i].firstarc;
printf("%c ",G->vertices[i
连通图的关节点算法
最新推荐文章于 2022-02-16 17:17:43 发布
本文深入探讨了连通图的关节点算法,详细阐述了如何识别和计算图中具有关键作用的节点。通过对图的遍历和连通组件分析,揭示了关节点在保持图连通性方面的重要性,并提供了具体的实现策略和示例,对于理解和应用图论算法具有指导意义。
摘要由CSDN通过智能技术生成