连通图的关节点算法

本文深入探讨了连通图的关节点算法,详细阐述了如何识别和计算图中具有关键作用的节点。通过对图的遍历和连通组件分析,揭示了关节点在保持图连通性方面的重要性,并提供了具体的实现策略和示例,对于理解和应用图论算法具有指导意义。
摘要由CSDN通过智能技术生成
//---连通图的关节点寻找算法---//
//连通图的深度优先生成树中关节点特性:
//1.若生成树的根有两棵或两棵以上的子树,则此根顶点必为关节点,因为图中不存在联结不同子树中顶点的边;
//2.若生成树中某个非叶子顶点,其某棵子树的结点均没有指向该结点的祖先的回边,则该结点必为关节点。
#include <stdio.h>
#include <stdlib.h>
#include "AdjacencyList.h"

typedef enum {FALSE,TRUE}Boolean;
int count;                          //计数已访问的点的数量,用于判断根结点是否为关节点
int DFN[MAX_VERTEX_NUM];        //深度优先搜索树中点i访问的顺序
int LOW[MAX_VERTEX_NUM];            //深度优先搜索树中点i所能回溯到的最浅层的点(如不能回溯,则为自己)

void FindArticul(ALGraph G);        //寻找关节点算法
void DFSArticul(ALGraph G,int v);   //从v点开始深度优先遍历寻找关节点

int main()
{
    ALGraph *G;
    G=(ALGraph *)malloc(sizeof(ALGraph));

    CreateGraph(G);
    int i,j;
    printf("图结构(邻接表表示):\n");
    for(i=0;i<G->vexnum;i++)
    {
        ArcNode *p;
        p=(ArcNode *)malloc(sizeof(ArcNode));
        p=G->vertices[i].firstarc;
        printf("%c ",G->vertices[i
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值