向量坐标相乘的计算算法

知识积累 专栏收录该内容
16 篇文章 0 订阅

比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD=? 向量AB×向量SD=2×5+3×8=34

向量相乘分数量积、向量积两种:

向量 a = (x, y, z),

向量 b = (u, v, w),

数量积 (点积): a·b = xu+yv+zw

向量积 (叉积): a×b =

|i j k|

|x y z|

|u v w|

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在这里插入图片描述

扩展资料:

一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如 ,也可以用大写字母AB、CD上加一箭头(→)等表示,如, 。

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。

为平面直角坐标系内的任意向量,以坐标原点O为起点作向量 。

由平面向量基本定理可知,有且只有一对实数(x,y),使得 ,因此把实数对 叫做向量 的坐标,记作 。这就是向量 的坐标表示。其中 就是点 的坐标。向量 称为点P的位置向量。

方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。

若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值