LlamaIndex中应用自定义提示词提升回答质量

 在 LlamaIndex 中,get_response_synthesizer 允许你自定义生成回答的方式,包括传入自定义提示词(prompt)。可以通过 response_mode 和 text_qa_template 等参数来控制回答的生逻辑。在 LlamaIndex 中优化提示词(Prompt Template)可以显著提升回答质量。

一、使用自定义提示词

1. 使用 text_qa_template 自定义提示词

text_qa_template 用于控制生成回答时的提示模板。你可以直接传入一个自定义的 PromptTemplate。

示例代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.prompts import PromptTemplate
from llama_index.core.response_synthesizers import get_response_synthesizer

# 加载数据
documents = SimpleDirectoryReader("your_data_dir").load_data()
index = VectorStoreIndex.from_documents(documents)

# 自定义提示词模板
custom_qa_prompt = PromptTemplate(
    """\
请根据以下上下文信息回答问题。如果无法从上下文中得到答案,请回答“我不知道”。

上下文:
{context_str}

问题:
{query_str}

答案:
"""
)

# 获取 ResponseSynthesizer 并传入自定义提示词
response_synthesizer = get_response_synthesizer(
    response_mode="compact",  # 或其他模式,如 "refine", "tree_summarize"
    text_qa_template=custom_qa_prompt,
)

# 使用 query_engine 查询
query_engine = index.as_query_engine(response_synthesizer=response_synthesizer)
response = query_engine.query("你的问题是什么?")
print(response)

2. 修改 response_mode 并传入不同的提示模板

response_mode 控制回答的生成方式,常见选项:

"compact"(默认):合并多个片段后生成回答。

"refine":逐步优化回答。

"tree_summarize":树状结构总结信息。

"no_text":不返回文本,只返回节点信息。

示例:使用 refine 模式并自定义提示

from llama_index.core.prompts import Promp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值