【论文笔记】UnifiedQA:新SOTA,生成模型一统问答任务

UnifiedQA是首个能处理多种形式问答任务的预训练模型,使用text-to-text架构,通过多任务学习展现出强大的泛化能力,超越了特定任务格式的模型。在多个数据集上微调后,该模型达到了新的SOTA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

问答任务有多种形式,常见的有抽取式问答(EX)、摘要式问答(AB)、多选题式问答(MC)、判断式问答(YN)。
在这里插入图片描述
一般的解决方案是针对不同形式的问答任务设计不同的模型。例如,抽取式问答、多选题式问答、判断式问答可以转化为分类任务,摘要式问答可以转换为生成任务。
尽管任务形式不同,但模型所需的语义理解和推理能力是共通的,或许不需要 format-specialized models。基于这种直觉,Allen 研究所联合华盛顿大学于2020年11月在 EMNLP 上提出首个可以处理多种形式的预训练问答模型 UnifiedQA,成为多个问答任务的新 SOTA。所有 NLP 任务都能转换为 seq2seq 任务。基于同样的思想,UnifiedQA 是一个 text-to-text 的预训练问答模型,编码器接收用“\n”拼接起来的问题,解码器生成回答。Table 1 展示了四个问答任务的样例。

论文名称:UNIFIEDQA: Crossing Format Boundaries with a Single QA System
论文链接:https://aclanthology.org/2020.findings-emnlp.171
论文代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值