引言
问答任务有多种形式,常见的有抽取式问答(EX)、摘要式问答(AB)、多选题式问答(MC)、判断式问答(YN)。
一般的解决方案是针对不同形式的问答任务设计不同的模型。例如,抽取式问答、多选题式问答、判断式问答可以转化为分类任务,摘要式问答可以转换为生成任务。
尽管任务形式不同,但模型所需的语义理解和推理能力是共通的,或许不需要 format-specialized models。基于这种直觉,Allen 研究所联合华盛顿大学于2020年11月在 EMNLP 上提出首个可以处理多种形式的预训练问答模型 UnifiedQA,成为多个问答任务的新 SOTA。所有 NLP 任务都能转换为 seq2seq 任务。基于同样的思想,UnifiedQA 是一个 text-to-text 的预训练问答模型,编码器接收用“\n”拼接起来的问题,解码器生成回答。Table 1 展示了四个问答任务的样例。
论文名称:UNIFIEDQA: Crossing Format Boundaries with a Single QA System
论文链接:https://aclanthology.org/2020.findings-emnlp.171
论文代码: