题目
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/triangle
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解答
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
//运算符重载
ostream& operator << (ostream &out,vector< vector<int> > &arr){
for(int i=0;i<arr.size();i++)
{
for(int j=0;j<arr[i].size();j++)
{
out<<arr[i][j]<<"\t";
}
out<<"\n";
}
return out;
}
//db算法
class My_Dp {
public:
int Top_to_bottom(vector< vector<int> >& triangle)
{
int n = triangle.size(); //逐层解决
vector< vector<int> > temp(n,vector<int>(n)); //申请空间
temp[0][0] = triangle[0][0]; //初始化
for(int i=1;i<n;i++) //填充变量
{
//左
temp[i][0] = temp[i-1][0] + triangle[i][0];
//中
for(int j=1;j<i;j++)
{
temp[i][j] = min(temp[i-1][j],temp[i-1][j-1]) + triangle[i][j];
}
//右
temp[i][i] = temp[i-1][i-1] + triangle[i][i];
}
return *min_element(temp[n-1].begin(),temp[n-1].end());
}
int Bottom_to_top(vector< vector<int> >& triangle)
{
int n = triangle.size();
for(int i=n-2;i>=0;i--)
{
for(int j=0;j<=i;j++)
{
triangle[i][j] = min(triangle[i+1][j],triangle[i+1][j+1]) + triangle[i][j];
}
}
return triangle[0][0];
}
};
int main()
{
vector< vector<int> > triangle(4,vector<int>(5)); //创建4行,每行都是vector<int>(5)(容量为5的容器)
for(int i=0;i<triangle.size();i++)
{
triangle[i].resize(i+1);
for(int j=0;j<i+1;j++)
{
triangle[i][j] = (i+j+1)*(j+1)+2*(j+3)-4*j;
//cout<<triangle[i][j]<<"\t";
// cout<<"\ni\tj\n"<<i<<"\t"<<j<<endl;
}
// cout<<"\n";
}
cout<<triangle<<endl;
My_Dp test1;
//int result1 = test1.Top_to_bottom(triangle);
int result1 = test1.Bottom_to_top(triangle);
cout<<result1;
return 0;
}