三角形最小路径和 (使用动态规划-自顶向下,自底向上两种解法)

题目

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。

例如,给定三角形:

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/triangle
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解答

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;
//运算符重载
ostream& operator << (ostream &out,vector< vector<int> > &arr){
    for(int i=0;i<arr.size();i++)
    {
        for(int j=0;j<arr[i].size();j++)
        {
            out<<arr[i][j]<<"\t";
        }
        out<<"\n";
    }
    return out;
}

//db算法
class My_Dp {
public:
    int Top_to_bottom(vector< vector<int> >& triangle)
    {
        int n = triangle.size();  //逐层解决
        vector< vector<int> > temp(n,vector<int>(n));   //申请空间
        temp[0][0] = triangle[0][0];    //初始化
        for(int i=1;i<n;i++)    //填充变量
        {
            //左
            temp[i][0] = temp[i-1][0] + triangle[i][0];
            //中
            for(int j=1;j<i;j++)
            {
                temp[i][j] = min(temp[i-1][j],temp[i-1][j-1]) + triangle[i][j];
            }
            //右
            temp[i][i] = temp[i-1][i-1] + triangle[i][i];
        }
        return *min_element(temp[n-1].begin(),temp[n-1].end());
    }
    int Bottom_to_top(vector< vector<int> >& triangle)
    {
        int n = triangle.size();
        for(int i=n-2;i>=0;i--)
        {
            for(int j=0;j<=i;j++)
            {

                triangle[i][j] = min(triangle[i+1][j],triangle[i+1][j+1]) + triangle[i][j];
            }
        }
        return triangle[0][0];
    }
};

int main()
{
    vector< vector<int> > triangle(4,vector<int>(5)); //创建4行,每行都是vector<int>(5)(容量为5的容器)
    for(int i=0;i<triangle.size();i++)
    {
        triangle[i].resize(i+1);
        for(int j=0;j<i+1;j++)
        {
            triangle[i][j] = (i+j+1)*(j+1)+2*(j+3)-4*j;
            //cout<<triangle[i][j]<<"\t";
           // cout<<"\ni\tj\n"<<i<<"\t"<<j<<endl;
        }
       // cout<<"\n";
    }
    cout<<triangle<<endl;
    
    My_Dp test1;
    //int result1 = test1.Top_to_bottom(triangle);
    int result1 = test1.Bottom_to_top(triangle);
    cout<<result1;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hanzoe_lwh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值