著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N = 5 N = 5 N=5, 排列是1、3、2、4、5。则:
1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤10^5 ); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 10^9 。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路:我是直接按题目意思来,直接从左往右遍历一次,再从右往左遍历一次。往右遍历是为了找出满足比左边元素都大的元素,往左遍历是为了找出满足比右边元素都小的元素,满足两个条件的就是主元了。然后丢入set 省得排序
测试点2格式错误因为没有输出换行
#include<iostream>
#include<cstring>
#include<set>
using namespace std;
const int N = 1e5;
int *num;
bool *Is_true;//记录是否正确
int main() {
ios::sync_with_stdio(false);
set<int>ans;
int n;
int Max = 0;
cin >> n;
num = new int[n];
Is_true = new bool[n];
memset(Is_true, 0, sizeof(Is_true));
/*从左边开始,标记(符合左边元素都比他小这一条件)的元素,并记录当前的最大值,
因为,每个主元都要比前面最大的元素都大
*/
for (int i = 0;i < n;++i) {
cin >> num[i];
if (num[i] > Max) {
Is_true[i] = 1;
Max = num[i];
}
}
/*同理,从右边再扫描一遍,这时记录最小值,因为主元要比后面最小值都小*/
int Min = 0x7f7f7f7f;
for (int i = n - 1;i >= 0;--i) {
if (Min > num[i]) {
if (Is_true[i]) ans.insert(num[i]);//如果都满足,就是主元,懒得排序,直接丢set里面
Min = num[i];
}
}
bool f = false;
cout << ans.size() << endl;
for (auto i : ans) {
cout << (f ? " " : "") << i;
f = true;
}
//没有这个,测试点2会格式错误
cout << endl;//有点坑,哪怕是0,也要输出一个换行,因为在第二行输出元素嘛,哪怕没有也要输出第二行
delete[]num;
delete[]Is_true;
return 0;
}
有更好的解法,欢迎交流。