数据结构简答题汇总

这篇博客汇总了数据结构考研常见的问题,包括算法时间复杂度、空间复杂度、贪心算法、动态规划、分治策略的定义及区别,数据的存储结构(顺序、链式、索引、哈希),循环与递归的效率对比,顺序表与链表的比较,栈、队列的特点及应用场景,递归与非递归转换,以及矩阵压缩和串的模式匹配等核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面对即将要参加的考研复试,数据结构是必考科目,希望以下能派上用场

1.算法的时间复杂度
答:在程序中反复执行的语句的执行次数被称为语句的频度,时间复杂度就是所有语句频度之和的数量级,而所有语句的频度之和与程序最内层循环的频度是同一个数量级,所以算法的时间复杂度是最内层循环的频度的数量级

补充:算法设计的步骤
1.建立数据模型
2.确定数据结构与算法
3.选用语言
4.调试并运行

2.空间复杂度
答:程序在运行时所占的空间
直接插入排序的空间复杂度是O(1),递归的空间复杂度是O(n)

3.贪心算法、动态规划和分治算法
答:贪心算法是指从上到下,每次都求解局部最优解的算法,特点是每次求解最优解,但是最终的结果不一定是最优,经典例子是背包问题。

动态规划是将一个大问题划分成若干个子问题,问题之间存在重叠,从上到下,求解整体最优解,每一次的求解会对下一次的问题造成影响,最终的最优解不一定包含每次的最优解,但是一定有部分最优解。经典例子是求最长子串。

分治算法是将一个大问题划分成若干个和大问题相似的子问题,再对子问题进行递归求解,最终合并得到最后的结果。特点是大问题的划分与子问题相似,并且每个问题之间是相互独立的。经典例子是二路归并排序、快速排序

4.数据的存储结构
答:
(1)顺序存储:逻辑上相邻的两个元素的物理位置也相邻。
优点:能够随机存取。
缺点:插入删除需要移动大量的元素,不方便。

(2)链式存储:逻辑上相邻的两个元素的物理位置不一定相邻,每个结点用一个指针来找到下一个结点的位置。
优点:插入和删除很方便
缺点:随机读取时不方便,需要从第一个结点开始遍历

(3)索引存储:在存储时,还附加建立索引表,索引表中的每一项称为索引项,索引项的一般形式是(关键字,地址)
优点:检索速度快
缺点:索引表占用存储空间,并且插入和删除一个数据时,对应的索引项也要插入和删除,会耗费较多的时间

(4)哈

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红心柚大果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值