最近有小伙伴问了如何实现返回数据中与各自取整值最小的数据?我用R写了几个函数实现这一功能,下面我们来看具体的步骤:
比如有一组数据:x=c(0.9,0.8,1.6,2.3)
首先去计算数据的取整值是多少:规则是选择每个数据与其向上取整和向下取整之差最小的取整值作为最终的取整值。
再次计算出数据中离各自取整值最近的数作为最终的结果.
比如数据:x=c(0.9,0.4,1.6,2.4) 取整值a=c(1,1,2,2) 各个数据离取整值的差=c(0.1,0.2,0.4,0.3) 我们的返回值为=c(0.9,2.3) (0.9距离1的单位长度是0.1,是距离取整值1最近的数据;2.3距离2的单位长度是0.3,是距离取整值2最近的数据).
代码实现:
round1 <- function(x){
if((floor(x)+0.5) <= x) return(ceiling(x))
else return(floor(x))} #判断每个数字是向上取整还是向下取整
f <- function(x,y){
a <- sapply(y,round1)
b <- y[which(a==x)]
return(b[which.min(abs(b-x))])}
F <- function(x){
a0 <- x
a <- sapply(x,round1)
C <- sapply(a,f,y=a0)
return(C)}
x=c(0.9,1.2,2.3,1.5)
F(x)
这种结果是对每个值都进行了计算在数据框处理方面会有优势。
如果只是想得到最终的结果,以下代码可适用:
round1 <- function(x){
if((floor(x)+0.5) <= x) return(ceiling(x))
else return(floor(x))} #判断每个数字是向上取整还是向下取整
f <- function(x,y){
a <- sapply(y,round1)
b <- y[which(a==x)]
return(b[which.min(abs(b-x))])}
F <- function(x){
a0 <- x
a <- unique(sapply(x,round1))
C <- sapply(a,f,y=a0)
return(C)}
x=c(0.9,1.2,2.3,1.5)
F(x)
以上就是整个实现过程,欢迎感兴趣的小伙伴一起交流。