- 博客(10)
- 收藏
- 关注
原创 残差网络图像分类
图像数据来自吴恩达深度学习,主要任务是分辨图像中人物是笑脸(1)还是非笑脸(0),是二分类的问题,使用交叉熵损失函数。 三层卷积: 模型训练: epoch=0: loss=0.7684744847448248epoch=5: loss=0.45560904553062037epoch=10: loss=0.30206744764980514epoch=15: loss=0.16170190353142588epoch=20: los...
2022-06-06 14:57:38
721
原创 搭建卷积神经网络实现图片分类
数据来源于吴恩达深度学习课程,主要是实现对图片中的手势识别并进行分类。课程中的mini_batch可以通过继承pytorch中的dataset类,很容易进行实现。mini_batch:class Image_Data(Dataset): def __init__(self, data_path): super(Image_Data, self).__init__() # 读取数据集 dataset = h5py.File(data_path,
2022-05-29 15:45:25
593
原创 搭建神经网络实现简单图片分类
数据来源于吴恩达L2HW3(SIGNS 数据集),训练集包含1800张64*64像素的彩色图片,图片内容为手势,表示从0到5的数字,所要做的是搭建较深的神经网络,以实现图片分类。测试集包含120张图片。数据集读取:def load_dataset(): %cd '/content/drive/MyDrive/Colab Notebooks/吴恩达L2HW3/dataset' train_dataset = h5py.File('train_signs.h5', "r")
2022-05-29 15:20:09
1252
原创 神经网络压缩
面对参数量巨大的神经网络,如何将这些巨大的模型更好应用于算力较小的设备上成为一个难点,因而研究如何对神经网络进行压缩成为一个重点。神经网络压缩有五种方法1.参数/神经元修剪(Network Pruning)每次只修建网络的一小部分参数或者神经元,之后进行训练,如此反复。通过去除网络中对网络性能影响不大的参数或者神经元来缩小网络规模,使得缩小后的模型虽然性能稍微有所下降,但仍然在可接受的范围内,本质上是用模型性能换取模型所需算力。通过对模型参数重要性进行评估,如参数的绝对值的大小,
2022-05-23 15:56:40
1433
原创 图像分类_CNN的一些知识
图片包括三个维度,channels(RGB),像素点个数(128*128等),倘若仅使用全连接网络,则模型所包括的参数量会很大,考虑到人眼分辨图片仅需一些关键特征即可做出判断,因此产生了CNN。Convolutional Layer使用卷积核filter(模型参数)对图片(可转换成三维矩阵)进行处理。import torchimport torch.nn as nnconv_1=nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,.
2022-05-23 14:25:20
349
原创 【无标题】
使用torch.utils.data.random_split()划分数据集torch.utils.data.random_split(dataset, lengths, generator=<torch._C.Generator object>)随机将一个数据集分割成给定长度的不重叠的新数据集。可选择固定生成器以获得可复现的结果(效果同设置随机种子)。import torchfrom torch.utils.data import random_splitdataset =
2022-05-17 16:01:34
664
原创 Pytorch基础知识
张量加法 减法张量中每个数求和 张量每个数平方维度增减,squeeze去掉长度为1的维度,unsqueeze增加一个维度,且长度为1张量拼接维度重构降至一维梯度计算生成由随机数组成的张量:得到张量x中的最大值: 得到张量中每一列的最大值(dim=0)并返回对...
2022-05-15 11:42:20
301
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人