- 题目
题目描述
一个数列a1,a2,⋯,an,如果对于区间[L,R],,那么我们称其为斐波那契区间。求数列中最长的斐波那契区间长度。
输入
第一行是一个整数T(1≤T≤1000),表示样例的个数。
每个样例有两行,第一行是数列的元素个数n(2≤n≤10000)。
第二行是n个整数ai(0≤ai≤109)。
输出
每行输出一个样例的结果。
样例输入
2
10
1 2 3 5 8 13 21 34 55 89
5
1 1 1 1 1 1
样例输出
10
2
- 解法
根据a[i+2]=a[i+1]+a[i],可以直接遍历数组查找最长的满足这个要求的长度。我的代码如下。
#include <cstdio>
#include <iostream>
using namespace std;
int a[10005];
int main(int argc, char const **argv) {
int T;
cin >> T;
while(T--) {
int n, cnt=2, temp = 2;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d", &a[i]);
}
//遍历数组查找满足要求的最长长度
for(int i = 0; i < n-2; i++) {
if(a[i+2] == (a[i] + a[i+1]))
cnt++;
else {
if(cnt >= temp) {
temp = cnt;
}
cnt = 2;
}
}
printf("%d\n", cnt > temp ? cnt:temp);
}
return 0;
}