一、学前建议
难度较大,一定要理解概念背后的原理,理解字母之间的关系,不能死记硬背公式。
学习内容主要有:
①影响资金时间价值的因素:哪些因素,如何影响;
②现金流量图和现金流量表:绘制规则(此知识点直接考查不多,但确是做资金等值计算题目的
重要工具);
③资金等值计算公式:P、F、A 各自的概念及相互关系。
二、资金时间价值的影响因素(重要)
资金的时间价值来源于资金在生产运营中发挥作用带来的增值,因此,影响企业生产经营效益的内外因素,如产业政策、企业规模、劳动力素质、企业领导者管理水平、产品的市场竞争力等,都会成为资金时间价值的影响因素。
直接相关的影响因素有
资金使用的时机
资金的使用时长
投入运营的资金数量的多少
资金周转的速度
拓展
(1)资金使用的时机。不同时机生产经营获利的可能性及水平高低不同,资金在不同时机使用
的增值潜力不同,具有不同的时间价值。
(2)资金的使用时长。在单位时间的资金增值率一定的条件下,资金使用时间越长,则资金的
时间价值越大;使用时间越短,则资金的时间价值越小。
(3)投入运营的资金数量的多少。在其他条件不变的情况下,投入运营的资金数量越多,资金
的时间价值就越大;反之,资金的时间价值则越小。
(4)资金周转的速度。在资金周转效率一定的情况下,资金周转越快,在一定的时间内等量资
金的周转次数越多,资金的时间价值越大;反之,资金的时间价值越小。
三、现金流量图和现金流量表(重要)
现金流量的三要素:现金流量的大小;方向;作用点(现金流量发生的时点)。0表示起点,n表示终点
现金流量图
现金流量图的绘制方法和规则:
1.时间轴,每一刻度是一个时间单位,可以是年、月、日等。(资金支付周期)
2.现金流量:时间轴上方的箭线表示现金流入,下方的箭线表示现金流出。
3.箭线与时间轴的交点为现金流发生的时点。某一期发生的资金流汇总在该期某一时点(如期初、期末、期中等)标注。
4.箭线长短相对表示现金流量的大小。只要箭线长短能相对体现各时点现金流量数值的差异即
可。
拓展
时间轴上的点称为时点,其中 0 表示时间序列的起点;n 表示时间序列的终点,除起点 0 和终点
n 外,其他时点既表示一个时间单位的结束(期末),也表示下一个时间单位的开始(期初)。
一项资金收付是现金流入还是流出,取决于分析的视角,例如,企业从银行借入一笔资金并入账,
从企业视角是现金流入,从银行视角是现金流出;企业归还借款时,情况刚好相反。
现金流量表:
现金流量表中,时间单位数值表示该时间单位期末,分析需要时,可增加 0 期,表示第 1 期期
初。
时间单位 | 1 | 2 | 3 | … | n-1 | n |
---|---|---|---|---|---|---|
现金流入 | ||||||
现金流出 |
四、资金等值计算(必会)
一、资金等值计算公式
- 符号
- F-FV-Future Value-终值-未来某一时点的价值
- P-Present Value-现值-现在的价值,或者相比于未来某时点之前的价值
- A-Annuity-年金-每年都有的现金流。是发生在(或折算为)某一特定时间序列各计息期末(不包括第 1 期期初,即 0 期)的等额资金系列的价值。
- i-利率
- n-期数(如果起始点为 a,终点为 b,n=b-a,也就是中间间隔的期数)
- 复利运算(知道现值求终值):F=(F/P,i,n) = P(𝟏 + 𝐢)𝒏
- 折现运算(知道终值求现值):𝐏=(P/F,i,n) = 𝐅(𝟏 + 𝐢)−𝒏
- 知道年金求终值:F =(F/A,i,n)= 𝐴(1 + i)𝑛−1 + 𝐴(1 + i)𝑛−2+ ⋯ 𝐴(1 + i)+ 𝐴
- 知道年金求现值 P=(P/A,i,n)= 𝐴(1 + i)−1 + 𝐴(1 + i)−2 +⋯ 𝐴(1 + i)−n
- 等额支付系列终值计算:
F = A ( F / A , i , n ) = A ( 1 + i ) n − 1 i F=A(F/A,i,n)=A\frac{ (1+i)^n-1 }{i} F=A(F/A,i,n)=Ai(1+i)n−1 - 偿债基金计算:
A = F ( A / F , i , n ) = F i ( 1 + i ) n − 1 A=F (A/F,i,n)=F\frac{ i }{ (1+i)^n-1 } A=F(A/F,i,n)=F(1+i)n−1i - 等额支付系列现值计算:
P = A ( P / A , i , n ) = A ∗ ( 1 + i ) n − 1 i ( 1 + i ) n P = A(P/A,i,n) = A*\frac{(1+i)^n-1}{ i (1+i)^n } P=A(P/A,i,n)=A∗i(1+i)n(1+i)n−1 - 资金回收计算:
A = P ( A / P , i , n ) = P ∗ ( 1 + i ) n ∗ i ( 1 + i ) n − 1 A = P(A/P,i,n) = P*(1+i)^n*\frac{ i }{ (1+i)^n-1 } A=P(A/P,i,n)=P∗(1+i)n∗(1+i)n−1i
以上2~9条记住以下公式即可,其它用他们推导
F = ( F / P , i , n ) = P ( 1 + i ) n F=(F/P,i,n) = P(1+i)^n F=(F/P,i,n)=P(1+i)n
F = A ( F / A , i , n ) = A ( 1 + i ) n − 1 i F=A(F/A,i,n)=A\frac{ (1+i)^n-1 }{i} F=A(F/A,i,n)=Ai(1+i)n−1
二、等值计算公式应用要点
应用资金等值计算应注意以下要点: - 合理选取收益率 i
(1 + i)n为大于 1 的指数,并且 i 和 n 越大,指数值越大,等值换算后的差额越大。工程经济
活动中:应尽量将现金流入往早期安排,尽量推迟现金流出的支付时间。 - 准确把握等值计算系数中的 n
一次支付等值计算系数中的 n 是时间序列中的期数,即从时间序列起点(0 期)到终点(n 期末)
之间的期数。 - 严格遵循现值 P、终值 F、年金 A 等值换算之间的相对关系
P 位于时间序列的起点,即等额支付系列现金流量中第 1 期的起点。
F 位于时间序列的终点,即等额支付系列现金流量中最后一期期末,与最后一期现金流量时点重
合。 - 计息周期小于资金收付周期时等值计算的处理
等值计算公式中,收益率(利率)i 的时间单位(计息周期)和资金收付周期(即现金流量图中
相邻时点的长度)应当一致,如均为一年。两者不一致时,应采用下列方法之一进行处理:
(1)按收付周期实际利率计算
即按照实际利率计算方法求取资金收付周期的实际收益率(利率),再套用等值计算公式进行等
值计算。
(2)按收益率(利率)i 的时间单位(计息周期)计算
即按照收益率(利率)i 的时间单位(计息周期)重新划分收付周期,按照重新划分以后的收付
周期和收益率(利率)i 进行等值计算。
四、练习
【例题•多选】关于资金时间价值的说法,正确的有( )。【2020】
A.单位时间资金增值率一定的条件下、资金的时间价值与使用时间成正比
B.资金随时间的推移而贬值的部分就是原有资金的时间价值
C.投入资金总额一定的情况下,前期投入的资金越多,资金的正效益越大
D.其他条件不变的情况下,资金的时间价值与资金数量成正比
E.一定时间内等量资金的周转次数越多,资金的时间价值越多
【答案】ADE
【解析】资金的时间价值来源于资金在生产运营中发挥作用带来的增值,因此,影响企业生产经
营效益的各种内外因素,如产业政策、企业规模、劳动力素质、企业领导者管理水平、产品的市场竞
争力等,都会成为资金时间价值的影响因素,其中资金时间价值的直接影响因素有:
(1)资金使用的时机。不同时机生产经营获利的可能性及水平高低不同,资金在不同时机使用
的增值潜力不同,具有不同的时间价值。
(2)资金的使用时长。在单位时间的资金增值率一定的条件下,资金使用时间越长,则资金的
时间价值越大;使用时间越短,则资金的时间价值越小。
(3)投入运营的资金数量的多少。在其他条件不变的情况下,投入运营的资金数量越多,资金
的时间价值就越大;反之,资金的时间价值则越小。
(4)资金周转的速度。在资金周转效率一定的情况下,资金周转越快,在一定的时间内等量资
金的周转次数越多,资金的时间价值越大;反之,资金的时间价值越小。
5.某企业从银行借入资金 1000 万元,期限 5 年,年利率 4.8%,按复利计息,第 5 年末还本付息。企业需要还本付息的总额是多少?
解:按上述公式计算,可得:
F=P(F/P,i,n)=1000×(F/P,4.8%,5)=1000×(1+4.8%)5
=1264.1727 万元
6. 某企业拟进行一项投资,希望第 5 年末收回 1000 万元资金(含投资本金),年收益率 4.8%,按复利计算,试问现在需要投资多少?
解:按上述公式计算,可得:
P=F(P/F,i,n)=1000×(P/F,4.8%,5)=1000×(1+4.8%)-5=791.0312 万元
-
某投资人 5 年内每年末投资 100 万元,年收益率 4.8%,按复利计算,问第 5 年末总
收益(含投资本金)为多少?
解:按上述公式计算,可得:
F = A ( F / A , i , n ) = A ( 1 + i ) n − 1 i = 100 ( 1 + 0.048 ) 5 − 1 0.048 = 550.3598 万元 F=A(F/A,i,n)=A\frac{ (1+i)^n-1 }{i}=100\frac{ (1+0.048)^5-1 }{0.048}=550.3598万元 F=A(F/A,i,n)=Ai(1+i)n−1=1000.048(1+0.048)5−1=550.3598万元 -
某企业希望未来 5 年每年末等额投入一笔资金用于偿还第 5 年末需要偿还的借款 1000
万元,年收益率 4.8%,按复利计算,试问每年末应投入多少?
解:按上述公式计算,可得:
A = F ( A / F , i , n ) = F i ( 1 + i ) n − 1 = 1000 ∗ 0.048 ( 1 + 0.048 ) 5 − 1 = 181.6993 万元 A=F (A/F,i,n)=F\frac{ i }{ (1+i)^n-1 }=1000*\frac{ 0.048}{ (1+0.048)^5-1 }= 181.6993 万元 A=F(A/F,i,n)=F(1+i)n−1i=1000∗(1+0.048)5−10.048=181.6993万元 -
某投资项目,周期 5 年,投资人希望每年年末等额收回 100 万元,若年收益率为 4.8%,
按复利计算,试问开始需一次投资多少?
解:按式上述公式计算,可得:
P = A ( P / A , i , n ) = A ∗ ( 1 + i ) n − 1 i ( 1 + i ) n = 435.3518 万元 P = A(P/A,i,n) = A*\frac{(1+i)^n-1}{ i (1+i)^n }=435.3518 万元 P=A(P/A,i,n)=A∗i(1+i)n(1+i)n−1=435.3518万元 -
某企业投资 1000 万元购置一台设备用于出租,寿命期 5 年,不考虑其他费用,若年
收益率为 4.8%,按复利计算,试问每年年末可等额回收多少?
解:按上述公式计算,可得:
A = P ( A / P , i , n ) = P ∗ ( 1 + i ) n ∗ i ( 1 + i ) n − 1 = 229.6993 万元 A = P(A/P,i,n) = P*(1+i)^n*\frac{ i }{ (1+i)^n-1 }= 229.6993 万元 A=P(A/P,i,n)=P∗(1+i)n∗(1+i)n−1i=229.6993万元 -
某企业从银行借入一笔资金,每半年复利计息一次,半年期利率 2%,从第 2 年开始,连续三年每年末等额偿还本息 100 万元,试计算该项借款的现值是多少?
解:该项借款利率的时间单位(计息周期)为半年,资金收付周期为一年,不能直接用等值计算
公式计算现值。
(1)按收付周期实际利率计算现值
收付周期为一年:
年实际利率为:i=[(1+2%)²-1]×100%=4.04%
结合等额支付系列现值计算公式和一次支付现值计算公式,可得到借款的现值为:
P=A(P/A,4.04%,3)(P/F,4.04%,1)
=100×2.7730×0.9612=266.5408 万元
(2)按计息周期计算现值
利率时间单位(计息周期)为半年,需要按半年划分收付周期:
采用一次支付现值公式计算,可得到投资借款现值为:
P = 266.5307 万元 -
计算题:P、F、A 已知其中两项,求另外一项
-
计算题:已知各年现金流量,求 P 或者 F
-
某公司希望所投资的项目第 5 年末回收 1000 万元资金,若年复利率为 6%,则公
司现在需要投入( )万元。【2023】
A.747.258
B.769.231
C.792.094
D.806.452
【答案】A -
关于一次支付现值、终值、计息期数和折现率相互关系的说法,正确的是( )。
【2022】
A.现值一定,计息期数相同,折现率越高,终值越小
B.现值一定,折现率相同,计息期数越少,终值越大
C.终值一定,折现率相同,计息期数越多,现值越大
D.终值一定,计息期数相同,折现率越高,现值越小
【答案】D
【解析】现值一定,计息数相同,折现率越高,终值越大。现值一定,折现率相同,计息期数越
少,终值越小。终值一定,折现率相同,计息期数越多,现值越小。终值一定,计息期数相同,折现率越高,现值越小。 -
某公司年初借入资金 1000 万元,期限 3 年,按年复利计息,年利率 10%,到期一
次还本付息。则第三年末应偿还的本利和为( )万元。【2021】
A.1210
B.1300
C.1331
D.1464
【答案】C -
某施工企业拟从银行借款 500 万元,期限 5 年,年利率 8%,按复利计息,则企业
支付本利和最多的还款方式为( )。【2016】
A.每年年末偿还当期利息,第 5 年年末一次还清本金
B.每年年末等额本金还款,另付当期利息
C.每年年末等额本息还款
D.第 5 年年末一次还本付息
【答案】D -
例题•单选】某施工企业每年年末存入银行 100 万元,用于 3 年后的技术改造,已知银行年利
率为 5%,按年复利计息,则到第 3 年末可用于技术改造的资金总额为( )。【2018】
A.331.01
B.330.75
C.315.25
D.315.00
【答案】C -
某施工企业投资 200 万元购入一台施工机械,计划从购买日起的未来 6 年等额收
回投资并获取收益,若基准收益率为 10%,复利计息,则每年末应获得的净现金流入为( )万元。
【2013】
A.200×(A/P,10%,6)
B.200×(F/P,10%,6)
C.200×(A/P,10%,7)
D.200×(A/F,10%,7)
【答案】A