一、源码
代码实现了typenum库中的类型级数组功能,允许在编译时对类型数组进行操作和计算。
//! A type-level array of type-level numbers.
//!
//! It is not very featureful right now, and should be considered a work in progress.
use core::ops::{Add, Div, Mul, Sub};
use super::*;
/// The terminating type for type arrays.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
#[cfg_attr(feature = "scale_info", derive(scale_info::TypeInfo))]
pub struct ATerm;
impl TypeArray for ATerm {}
/// `TArr` is a type that acts as an array of types. It is defined similarly to `UInt`, only its
/// values can be more than bits, and it is designed to act as an array. So you can only add two if
/// they have the same number of elements, for example.
///
/// This array is only really designed to contain `Integer` types. If you use it with others, you
/// may find it lacking functionality.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
#[cfg_attr(feature = "scale_info", derive(scale_info::TypeInfo))]
pub struct TArr<V, A> {
first: V,
rest: A,
}
impl<V, A> TypeArray for TArr<V, A> {}
/// Create a new type-level array. Only usable on Rust 1.13.0 or newer.
///
/// There's not a whole lot you can do with it right now.
///
/// # Example
/// ```rust
/// #[macro_use]
/// extern crate typenum;
/// use typenum::consts::*;
///
/// type Array = tarr![P3, N4, Z0, P38];
/// # fn main() { let _: Array; }
#[macro_export]
macro_rules! tarr {
() => ( $crate::ATerm );
($n:ty) => ( $crate::TArr<$n, $crate::ATerm> );
($n:ty,) => ( $crate::TArr<$n, $crate::ATerm> );
($n:ty, $($tail:ty),+) => ( $crate::TArr<$n, tarr![$($tail),+]> );
($n:ty, $($tail:ty),+,) => ( $crate::TArr<$n, tarr![$($tail),+]> );
($n:ty | $rest:ty) => ( $crate::TArr<$n, $rest> );
($n:ty, $($tail:ty),+ | $rest:ty) => ( $crate::TArr<$n, tarr![$($tail),+ | $rest]> );
}
// ---------------------------------------------------------------------------------------
// Length
/// Length of `ATerm` by itself is 0
impl Len for ATerm {
type Output = U0;
#[inline]
fn len(&self) -> Self::Output {
UTerm
}
}
/// Size of a `TypeArray`
impl<V, A> Len for TArr<V, A>
where
A: Len,
Length<A>: Add<B1>,
Sum<Length<A>, B1>: Unsigned,
{
type Output = Add1<Length<A>>;
#[inline]
fn len(&self) -> Self::Output {
self.rest.len() + B1
}
}
// ---------------------------------------------------------------------------------------
// FoldAdd
/// Hide our `Null` type
const _: () = {
/// A type which contributes nothing when adding (i.e. a zero)
pub struct Null;
impl<T> Add<T> for Null {
type Output = T;
fn add(self, rhs: T) -> Self::Output {
rhs
}
}
impl FoldAdd for ATerm {
type Output = Null;
}
};
impl<V, A> FoldAdd for TArr<V, A>
where
A: FoldAdd,
FoldSum<A>: Add<V>,
{
type Output = Sum<FoldSum<A>, V>;
}
// ---------------------------------------------------------------------------------------
// FoldMul
/// Hide our `Null` type
const _: () = {
/// A type which contributes nothing when multiplying (i.e. a one)
pub struct Null;
impl<T> Mul<T> for Null {
type Output = T;
fn mul(self, rhs: T) -> Self::Output {
rhs
}
}
impl FoldMul for ATerm {
type Output = Null;
}
};
impl<V, A> FoldMul for TArr<V, A>
where
A: FoldMul,
FoldProd<A>: Mul<V>,
{
type Output = Prod<FoldProd<A>, V>;
}
// ---------------------------------------------------------------------------------------
// Add arrays
// Note that two arrays are only addable if they are the same length.
impl Add<ATerm> for ATerm {
type Output = ATerm;
#[inline]
fn add(self, _: ATerm) -> Self::Output {
ATerm
}
}
impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al>
where
Al: Add<Ar>,
Vl: Add<Vr>,
{
type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>;
#[inline]
fn add(self, rhs: TArr<Vr, Ar>) -> Self::Output {
TArr {
first: self.first + rhs.first,
rest: self.rest + rhs.rest,
}
}
}
// ---------------------------------------------------------------------------------------
// Subtract arrays
// Note that two arrays are only subtractable if they are the same length.
impl Sub<ATerm> for ATerm {
type Output = ATerm;
#[inline]
fn sub(self, _: ATerm) -> Self::Output {
ATerm
}
}
impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al>
where
Vl: Sub<Vr>,
Al: Sub<Ar>,
{
type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>;
#[inline]
fn sub(self, rhs: TArr<Vr, Ar>) -> Self::Output {
TArr {
first: self.first - rhs.first,
rest: self.rest - rhs.rest,
}
}
}
// ---------------------------------------------------------------------------------------
// Multiply an array by a scalar
impl<Rhs> Mul<Rhs> for ATerm {
type Output = ATerm;
#[inline]
fn mul(self, _: Rhs) -> Self::Output {
ATerm
}
}
impl<V, A, Rhs> Mul<Rhs> for TArr<V, A>
where
V: Mul<Rhs>,
A: Mul<Rhs>,
Rhs: Copy,
{
type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>;
#[inline]
fn mul(self, rhs: Rhs) -> Self::Output {
TArr {
first: self.first * rhs,
rest: self.rest * rhs,
}
}
}
impl Mul<ATerm> for Z0 {
type Output = ATerm;
#[inline]
fn mul(self, _: ATerm) -> Self::Output {
ATerm
}
}
impl<U> Mul<ATerm> for PInt<U>
where
U: Unsigned + NonZero,
{
type Output = ATerm;
#[inline]
fn mul(self, _: ATerm) -> Self::Output {
ATerm
}
}
impl<U> Mul<ATerm> for NInt<U>
where
U: Unsigned + NonZero,
{
type Output = ATerm;
#[inline]
fn mul(self, _: ATerm) -> Self::Output {
ATerm
}
}
impl<V, A> Mul<TArr<V, A>> for Z0
where
Z0: Mul<A>,
{
type Output = TArr<Z0, Prod<Z0, A>>;
#[inline]
fn mul(self, rhs: TArr<V, A>) -> Self::Output {
TArr {
first: Z0,
rest: self * rhs.rest,
}
}
}
impl<V, A, U> Mul<TArr<V, A>> for PInt<U>
where
U: Unsigned + NonZero,
PInt<U>: Mul<A> + Mul<V>,
{
type Output = TArr<Prod<PInt<U>, V>, Prod<PInt<U>, A>>;
#[inline]
fn mul(self, rhs: TArr<V, A>) -> Self::Output {
TArr {
first: self * rhs.first,
rest: self * rhs.rest,
}
}
}
impl<V, A, U> Mul<TArr<V, A>> for NInt<U>
where
U: Unsigned + NonZero,
NInt<U>: Mul<A> + Mul<V>,
{
type Output = TArr<Prod<NInt<U>, V>, Prod<NInt<U>, A>>;
#[inline]
fn mul(self, rhs: TArr<V, A>) -> Self::Output {
TArr {
first: self * rhs.first,
rest: self * rhs.rest,
}
}
}
// ---------------------------------------------------------------------------------------
// Divide an array by a scalar
impl<Rhs> Div<Rhs> for ATerm {
type Output = ATerm;
#[inline]
fn div(self, _: Rhs) -> Self::Output {
ATerm
}
}
impl<V, A, Rhs> Div<Rhs> for TArr<V, A>
where
V: Div<Rhs>,
A: Div<Rhs>,
Rhs: Copy,
{
type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>;
#[inline]
fn div(self, rhs: Rhs) -> Self::Output {
TArr {
first: self.first / rhs,
rest: self.rest / rhs,
}
}
}
// ---------------------------------------------------------------------------------------
// Partial Divide an array by a scalar
impl<Rhs> PartialDiv<Rhs> for ATerm {
type Output = ATerm;
#[inline]
fn partial_div(self, _: Rhs) -> Self::Output {
ATerm
}
}
impl<V, A, Rhs> PartialDiv<Rhs> for TArr<V, A>
where
V: PartialDiv<Rhs>,
A: PartialDiv<Rhs>,
Rhs: Copy,
{
type Output = TArr<PartialQuot<V, Rhs>, PartialQuot<A, Rhs>>;
#[inline]
fn partial_div(self, rhs: Rhs) -> Self::Output {
TArr {
first: self.first.partial_div(rhs),
rest: self.rest.partial_div(rhs),
}
}
}
// ---------------------------------------------------------------------------------------
// Modulo an array by a scalar
use core::ops::Rem;
impl<Rhs> Rem<Rhs> for ATerm {
type Output = ATerm;
#[inline]
fn rem(self, _: Rhs) -> Self::Output {
ATerm
}
}
impl<V, A, Rhs> Rem<Rhs> for TArr<V, A>
where
V: Rem<Rhs>,
A: Rem<Rhs>,
Rhs: Copy,
{
type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>;
#[inline]
fn rem(self, rhs: Rhs) -> Self::Output {
TArr {
first: self.first % rhs,
rest: self.rest % rhs,
}
}
}
// ---------------------------------------------------------------------------------------
// Negate an array
use core::ops::Neg;
impl Neg for ATerm {
type Output = ATerm;
#[inline]
fn neg(self) -> Self::Output {
ATerm
}
}
impl<V, A> Neg for TArr<V, A>
where
V: Neg,
A: Neg,
{
type Output = TArr<Negate<V>, Negate<A>>;
#[inline]
fn neg(self) -> Self::Output {
TArr {
first: -self.first,
rest: -self.rest,
}
}
}
二、核心概念
- 类型数组定义
- ATerm:类型数组的终止类型,类似于空数组或链表中的nil
pub struct ATerm;
-
TArr<V, A>:类型数组节点,包含:
-
first:当前元素(类型V)
-
rest:剩余数组(类型A)
-
pub struct TArr<V, A> {
first: V,
rest: A,
}
- 创建类型数组的宏
tarr!宏提供了创建类型数组的便捷语法:
tarr![P3, N4, Z0, P38] // 创建包含4个元素的类型数组
tarr![P3 | rest] // 创建以P3开头,后面接rest数组的类型数组
三、主要功能实现
- 数组长度计算
-
Len trait为类型数组提供长度计算能力
-
ATerm长度为0
-
TArr长度为1 + 剩余部分的长度
impl Len for ATerm {
type Output = U0;
}
impl<V, A> Len for TArr<V, A> where ... {
type Output = Add1<Length<A>>;
}
- 数组运算
加法运算
-
只能对相同长度的数组相加
-
对应位置的元素相加
impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al> where ... {
type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>;
}
减法运算
-
只能对相同长度的数组相减
-
对应位置的元素相减
impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al> where ... {
type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>;
}
标量乘法
- 数组每个元素乘以标量
impl<V, A, Rhs> Mul<Rhs> for TArr<V, A> where ... {
type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>;
}
标量除法
- 数组每个元素除以标量
impl<V, A, Rhs> Div<Rhs> for TArr<V, A> where ... {
type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>;
}
取模运算
- 数组每个元素对标量取模
impl<V, A, Rhs> Rem<Rhs> for TArr<V, A> where ... {
type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>;
}
数组取反
- 数组每个元素取反
impl<V, A> Neg for TArr<V, A> where ... {
type Output = TArr<Negate<V>, Negate<A>>;
}
- 折叠操作
求和(FoldAdd)
-
使用Null作为加法单位元(类似0)
-
递归地对数组所有元素求和
impl<V, A> FoldAdd for TArr<V, A> where ... {
type Output = Sum<FoldSum<A>, V>;
}
求积(FoldMul)
-
使用Null作为乘法单位元(类似1)
-
递归地对数组所有元素求积
impl<V, A> FoldMul for TArr<V, A> where ... {
type Output = Prod<FoldProd<A>, V>;
}
四、设计特点
-
类型级递归:所有操作都是通过类型系统递归实现的
-
编译时计算:所有运算都在编译时完成,不产生运行时开销
-
类型安全:操作限制(如相同长度才能相加)通过类型系统保证
-
扩展性:可以方便地添加新的操作和功能
五、使用示例
use typenum::consts::*;
type Array1 = tarr![P3, N4, Z0, P38];
type Array2 = tarr![P1, P1, P1, P1];
type SumArray = <Array1 as Add<Array2>>::Output; // tarr![P4, N3, P1, P39]
这段代码为typenum库提供了强大的类型级数组功能,使得在编译时进行复杂的数组操作成为可能,同时保持了类型安全和零运行时开销的特性。