【typenum】 12 类型级数组(array.rs)

一、源码

代码实现了typenum库中的类型级数组功能,允许在编译时对类型数组进行操作和计算。

//! A type-level array of type-level numbers.
//!
//! It is not very featureful right now, and should be considered a work in progress.

use core::ops::{Add, Div, Mul, Sub};

use super::*;

/// The terminating type for type arrays.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
#[cfg_attr(feature = "scale_info", derive(scale_info::TypeInfo))]
pub struct ATerm;

impl TypeArray for ATerm {}

/// `TArr` is a type that acts as an array of types. It is defined similarly to `UInt`, only its
/// values can be more than bits, and it is designed to act as an array. So you can only add two if
/// they have the same number of elements, for example.
///
/// This array is only really designed to contain `Integer` types. If you use it with others, you
/// may find it lacking functionality.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
#[cfg_attr(feature = "scale_info", derive(scale_info::TypeInfo))]
pub struct TArr<V, A> {
    first: V,
    rest: A,
}

impl<V, A> TypeArray for TArr<V, A> {}

/// Create a new type-level array. Only usable on Rust 1.13.0 or newer.
///
/// There's not a whole lot you can do with it right now.
///
/// # Example
/// ```rust
/// #[macro_use]
/// extern crate typenum;
/// use typenum::consts::*;
///
/// type Array = tarr![P3, N4, Z0, P38];
/// # fn main() { let _: Array; }
#[macro_export]
macro_rules! tarr {
    () => ( $crate::ATerm );
    ($n:ty) => ( $crate::TArr<$n, $crate::ATerm> );
    ($n:ty,) => ( $crate::TArr<$n, $crate::ATerm> );
    ($n:ty, $($tail:ty),+) => ( $crate::TArr<$n, tarr![$($tail),+]> );
    ($n:ty, $($tail:ty),+,) => ( $crate::TArr<$n, tarr![$($tail),+]> );
    ($n:ty | $rest:ty) => ( $crate::TArr<$n, $rest> );
    ($n:ty, $($tail:ty),+ | $rest:ty) => ( $crate::TArr<$n, tarr![$($tail),+ | $rest]> );
}

// ---------------------------------------------------------------------------------------
// Length

/// Length of `ATerm` by itself is 0
impl Len for ATerm {
    type Output = U0;
    #[inline]
    fn len(&self) -> Self::Output {
        UTerm
    }
}

/// Size of a `TypeArray`
impl<V, A> Len for TArr<V, A>
where
    A: Len,
    Length<A>: Add<B1>,
    Sum<Length<A>, B1>: Unsigned,
{
    type Output = Add1<Length<A>>;
    #[inline]
    fn len(&self) -> Self::Output {
        self.rest.len() + B1
    }
}

// ---------------------------------------------------------------------------------------
// FoldAdd

/// Hide our `Null` type
const _: () = {
    /// A type which contributes nothing when adding (i.e. a zero)
    pub struct Null;
    impl<T> Add<T> for Null {
        type Output = T;
        fn add(self, rhs: T) -> Self::Output {
            rhs
        }
    }

    impl FoldAdd for ATerm {
        type Output = Null;
    }
};

impl<V, A> FoldAdd for TArr<V, A>
where
    A: FoldAdd,
    FoldSum<A>: Add<V>,
{
    type Output = Sum<FoldSum<A>, V>;
}

// ---------------------------------------------------------------------------------------
// FoldMul

/// Hide our `Null` type
const _: () = {
    /// A type which contributes nothing when multiplying (i.e. a one)
    pub struct Null;
    impl<T> Mul<T> for Null {
        type Output = T;
        fn mul(self, rhs: T) -> Self::Output {
            rhs
        }
    }

    impl FoldMul for ATerm {
        type Output = Null;
    }
};

impl<V, A> FoldMul for TArr<V, A>
where
    A: FoldMul,
    FoldProd<A>: Mul<V>,
{
    type Output = Prod<FoldProd<A>, V>;
}

// ---------------------------------------------------------------------------------------
// Add arrays
// Note that two arrays are only addable if they are the same length.

impl Add<ATerm> for ATerm {
    type Output = ATerm;
    #[inline]
    fn add(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al>
where
    Al: Add<Ar>,
    Vl: Add<Vr>,
{
    type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>;
    #[inline]
    fn add(self, rhs: TArr<Vr, Ar>) -> Self::Output {
        TArr {
            first: self.first + rhs.first,
            rest: self.rest + rhs.rest,
        }
    }
}

// ---------------------------------------------------------------------------------------
// Subtract arrays
// Note that two arrays are only subtractable if they are the same length.

impl Sub<ATerm> for ATerm {
    type Output = ATerm;
    #[inline]
    fn sub(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al>
where
    Vl: Sub<Vr>,
    Al: Sub<Ar>,
{
    type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>;
    #[inline]
    fn sub(self, rhs: TArr<Vr, Ar>) -> Self::Output {
        TArr {
            first: self.first - rhs.first,
            rest: self.rest - rhs.rest,
        }
    }
}

// ---------------------------------------------------------------------------------------
// Multiply an array by a scalar

impl<Rhs> Mul<Rhs> for ATerm {
    type Output = ATerm;
    #[inline]
    fn mul(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Mul<Rhs> for TArr<V, A>
where
    V: Mul<Rhs>,
    A: Mul<Rhs>,
    Rhs: Copy,
{
    type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>;
    #[inline]
    fn mul(self, rhs: Rhs) -> Self::Output {
        TArr {
            first: self.first * rhs,
            rest: self.rest * rhs,
        }
    }
}

impl Mul<ATerm> for Z0 {
    type Output = ATerm;
    #[inline]
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<U> Mul<ATerm> for PInt<U>
where
    U: Unsigned + NonZero,
{
    type Output = ATerm;
    #[inline]
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<U> Mul<ATerm> for NInt<U>
where
    U: Unsigned + NonZero,
{
    type Output = ATerm;
    #[inline]
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<V, A> Mul<TArr<V, A>> for Z0
where
    Z0: Mul<A>,
{
    type Output = TArr<Z0, Prod<Z0, A>>;
    #[inline]
    fn mul(self, rhs: TArr<V, A>) -> Self::Output {
        TArr {
            first: Z0,
            rest: self * rhs.rest,
        }
    }
}

impl<V, A, U> Mul<TArr<V, A>> for PInt<U>
where
    U: Unsigned + NonZero,
    PInt<U>: Mul<A> + Mul<V>,
{
    type Output = TArr<Prod<PInt<U>, V>, Prod<PInt<U>, A>>;
    #[inline]
    fn mul(self, rhs: TArr<V, A>) -> Self::Output {
        TArr {
            first: self * rhs.first,
            rest: self * rhs.rest,
        }
    }
}

impl<V, A, U> Mul<TArr<V, A>> for NInt<U>
where
    U: Unsigned + NonZero,
    NInt<U>: Mul<A> + Mul<V>,
{
    type Output = TArr<Prod<NInt<U>, V>, Prod<NInt<U>, A>>;
    #[inline]
    fn mul(self, rhs: TArr<V, A>) -> Self::Output {
        TArr {
            first: self * rhs.first,
            rest: self * rhs.rest,
        }
    }
}

// ---------------------------------------------------------------------------------------
// Divide an array by a scalar

impl<Rhs> Div<Rhs> for ATerm {
    type Output = ATerm;
    #[inline]
    fn div(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Div<Rhs> for TArr<V, A>
where
    V: Div<Rhs>,
    A: Div<Rhs>,
    Rhs: Copy,
{
    type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>;
    #[inline]
    fn div(self, rhs: Rhs) -> Self::Output {
        TArr {
            first: self.first / rhs,
            rest: self.rest / rhs,
        }
    }
}

// ---------------------------------------------------------------------------------------
// Partial Divide an array by a scalar

impl<Rhs> PartialDiv<Rhs> for ATerm {
    type Output = ATerm;
    #[inline]
    fn partial_div(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> PartialDiv<Rhs> for TArr<V, A>
where
    V: PartialDiv<Rhs>,
    A: PartialDiv<Rhs>,
    Rhs: Copy,
{
    type Output = TArr<PartialQuot<V, Rhs>, PartialQuot<A, Rhs>>;
    #[inline]
    fn partial_div(self, rhs: Rhs) -> Self::Output {
        TArr {
            first: self.first.partial_div(rhs),
            rest: self.rest.partial_div(rhs),
        }
    }
}

// ---------------------------------------------------------------------------------------
// Modulo an array by a scalar
use core::ops::Rem;

impl<Rhs> Rem<Rhs> for ATerm {
    type Output = ATerm;
    #[inline]
    fn rem(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Rem<Rhs> for TArr<V, A>
where
    V: Rem<Rhs>,
    A: Rem<Rhs>,
    Rhs: Copy,
{
    type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>;
    #[inline]
    fn rem(self, rhs: Rhs) -> Self::Output {
        TArr {
            first: self.first % rhs,
            rest: self.rest % rhs,
        }
    }
}

// ---------------------------------------------------------------------------------------
// Negate an array
use core::ops::Neg;

impl Neg for ATerm {
    type Output = ATerm;
    #[inline]
    fn neg(self) -> Self::Output {
        ATerm
    }
}

impl<V, A> Neg for TArr<V, A>
where
    V: Neg,
    A: Neg,
{
    type Output = TArr<Negate<V>, Negate<A>>;
    #[inline]
    fn neg(self) -> Self::Output {
        TArr {
            first: -self.first,
            rest: -self.rest,
        }
    }
}

二、核心概念

  1. 类型数组定义
  • ATerm:类型数组的终止类型,类似于空数组或链表中的nil
pub struct ATerm;
  • TArr<V, A>:类型数组节点,包含:

    • first:当前元素(类型V)

    • rest:剩余数组(类型A)

pub struct TArr<V, A> {
    first: V,
    rest: A,
}
  1. 创建类型数组的宏
    tarr!宏提供了创建类型数组的便捷语法:
tarr![P3, N4, Z0, P38]  // 创建包含4个元素的类型数组
tarr![P3 | rest]        // 创建以P3开头,后面接rest数组的类型数组

三、主要功能实现

  1. 数组长度计算
  • Len trait为类型数组提供长度计算能力

  • ATerm长度为0

  • TArr长度为1 + 剩余部分的长度

impl Len for ATerm {
    type Output = U0;
}

impl<V, A> Len for TArr<V, A> where ... {
    type Output = Add1<Length<A>>;
}
  1. 数组运算
加法运算
  • 只能对相同长度的数组相加

  • 对应位置的元素相加

impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al> where ... {
    type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>;
}
减法运算
  • 只能对相同长度的数组相减

  • 对应位置的元素相减

impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al> where ... {
    type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>;
}
标量乘法
  • 数组每个元素乘以标量
impl<V, A, Rhs> Mul<Rhs> for TArr<V, A> where ... {
    type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>;
}
标量除法
  • 数组每个元素除以标量
impl<V, A, Rhs> Div<Rhs> for TArr<V, A> where ... {
    type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>;
}
取模运算
  • 数组每个元素对标量取模
impl<V, A, Rhs> Rem<Rhs> for TArr<V, A> where ... {
    type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>;
}
数组取反
  • 数组每个元素取反
impl<V, A> Neg for TArr<V, A> where ... {
    type Output = TArr<Negate<V>, Negate<A>>;
}
  1. 折叠操作
求和(FoldAdd)
  • 使用Null作为加法单位元(类似0)

  • 递归地对数组所有元素求和

impl<V, A> FoldAdd for TArr<V, A> where ... {
    type Output = Sum<FoldSum<A>, V>;
}
求积(FoldMul)
  • 使用Null作为乘法单位元(类似1)

  • 递归地对数组所有元素求积

impl<V, A> FoldMul for TArr<V, A> where ... {
    type Output = Prod<FoldProd<A>, V>;
}

四、设计特点

  1. 类型级递归:所有操作都是通过类型系统递归实现的

  2. 编译时计算:所有运算都在编译时完成,不产生运行时开销

  3. 类型安全:操作限制(如相同长度才能相加)通过类型系统保证

  4. 扩展性:可以方便地添加新的操作和功能

五、使用示例

use typenum::consts::*;
type Array1 = tarr![P3, N4, Z0, P38];
type Array2 = tarr![P1, P1, P1, P1];
type SumArray = <Array1 as Add<Array2>>::Output;  // tarr![P4, N3, P1, P39]

这段代码为typenum库提供了强大的类型级数组功能,使得在编译时进行复杂的数组操作成为可能,同时保持了类型安全和零运行时开销的特性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuyuan77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值