【深入理解索引扩展—2】提升智能检索系统召回质量的3大利器

目录

一、离散索引扩展:用关键词与实体提升检索精度

1.1 关键词抽取

1.2 实体识别(NER)

1.3 离散索引(如关键词、实体)

二、连续索引扩展:融合多种向量模型提升召回能力

2.1 多模型融合

2.2 连续索引(如语义向量、嵌入检索)

三、混合索引召回:语义+关键词的协同召回

3.1 实战案例:医疗领域

四、Small-to-Big 策略:快速定位 + 深度理解

4.1 核心思路:

4.2 示例:

总结:构建强大检索系统的“索引三件套”

对比表

附:专业术语对照表


随着大模型和RAG(Retrieval-Augmented Generation)技术的发展,构建高效、精准的检索系统成为关键挑战。传统的向量检索虽然在语义理解上具有优势,但在召回覆盖率和精确匹配方面仍有提升空间。为了解决这些问题,研究者们提出了多种 索引扩展技术,主要包括:

  1. 离散索引扩展

  2. 连续索引扩展

  3. 混合索引召回

  4. Small-to-Big 策略

本文将逐一讲解这些方法的原理、应用和优势,帮助你构建更强大的 RAG 检索系统。


一、离散索引扩展:用关键词与实体提升检索精度

离散索引基于传统文本匹配方式,如关键词提取、实体识别等,是对语义向量检索的有效补充。通过构建关键词和命名实体等索引,可以提升系统在 精准匹配 场景下的召回能力。

1.1 关键词抽取

关键词是反映文档核心内容的词语,通过 TF-IDF、TextRank 等算法从文档中提取。

示例文档

本文介绍了深度学习模型训练中的优化技巧,包括:

  • 使用 AdamW 优化器替代传统的 SGD;

  • 采用混合精度训练,减少显存占用;

  • 使用分布式训练加速模型训练。

抽取关键词

["深度学习", "模型训练", "优化技巧", "AdamW", "混合精度训练", "分布式训练"]

当用户查询“如何优化深度学习模型训练?”时,这些关键词可实现高效匹配。

1.2 实体识别(NER)

实体识别是识别文本中的 专名词(人名、地点、奖项等),可以通过 SpaCy、BERT-NER 等模型提取。

示例文档

2023年诺贝尔物理学奖授予了三位科学家,以表彰他们在量子纠缠领域的研究成果。

识别实体

["2023年", "诺贝尔物理学奖", "量子纠缠"]

 若用户查询“2023年诺贝尔物理学奖的获奖者是谁?”,这些实体可用于快速召回相关文档。

1.3 离散索引(如关键词、实体)

  • 特点:基于字符串精确匹配(如 BM25、关键词、NER 实体等)

  • 优势高精度召回

    • 匹配度高、歧义少,尤其适合有明确关键词的查询。

  • 劣势低覆盖率

    • 对措辞差异、语义变化不敏感,容易漏掉相关但表述不同的内容。


二、连续索引扩展:融合多种向量模型提升召回能力

连续索引是指基于向量模型构建的语义索引,能够捕捉上下文之间的深层含义。但不同向量模型对语言理解的侧重点不同,因此引入多模型 多路召回 成为一种有效策略。

2.1 多模型融合

将多种向量模型(如 OpenAI Ada、智源BGE、Cohere、E5 等)应用于同一语料构建多个索引。每种模型负责不同语义维度的召回。

模型特点
OpenAI Ada泛化能力强,适合多语言
智源 BGE对中文任务表现优异
E5多任务预训练,支持多领域

最终可以通过多路召回、打分融合等方法集成多种结果,提升召回的覆盖率和鲁棒性。

2.2 连续索引(如语义向量、嵌入检索)

  • 特点:基于深度模型生成的语义向量表示(如 OpenAI Ada、BGE)

  • 优势高覆盖率

    • 能理解相似含义、上下文相关内容,扩大召回范围。

  • 劣势相对低精度

    • 有时会召回“看起来相关但不准确”的内容,语义泛化可能带来误召。


三、混合索引召回:语义+关键词的协同召回

**混合索引(Hybrid Retrieval)**结合了离散索引和连续索引的优点,能够实现 高覆盖率 + 高精度召回

3.1 实战案例:医疗领域

示例文档

本文介绍了人工智能在医疗领域的应用,包括:

  • 医学影像分析;

  • NLP提取电子病历信息;

  • 开发智能诊断系统辅助医生决策。

关键词抽取

["人工智能", "医疗", "深度学习", "医学影像分析", "自然语言处理", "电子病历", "智能诊断系统"]

 实体识别

["人工智能", "医疗", "自然语言处理"]

结合关键词、实体和语义向量三者,在用户输入“人工智能在医疗中的应用”时能实现更强召回能力和更丰富上下文支撑。


四、Small-to-Big 策略:快速定位 + 深度理解

Small-to-Big 是一种适用于 长文档或大语料库 的检索策略。

4.1 核心思路:

  1. 索引小规模内容(摘要、关键句、短段落),快速定位目标;

  2. 链接大规模内容(全文、PDF、上下文),供RAG生成使用;

  3. 提升效率与连贯性

4.2 示例:

小规模内容

  • 摘要1:介绍 Transformer 在机器翻译中的应用;

  • 关键句:BERT 是基于 Transformer 的预训练模型。

链接内容

  • 完整论文 PDF,包含实验细节和模型结构。

流程

查询 → 匹配摘要或关键句 → 跳转到全文 → 提供背景给RAG → 输出连贯答案。

这种方式兼顾了 速度(召回小内容)深度(拉取全内容),特别适合多文档和文献类场景。


总结:构建强大检索系统的“索引三件套”

策略类型描述适用场景
离散索引扩展使用关键词、实体补充向量召回精确匹配、高精度检索
连续索引扩展多向量模型并行召回提高语义覆盖、多语言任务
混合索引召回融合关键词与向量结果提升多样性与准确率
Small-to-Big小内容索引+大内容跳转文献类、长文档场景

对比表:

特性离散索引连续索引
匹配机制关键词/实体匹配语义相似度匹配
召回覆盖率⭐较低✅⭐较高
召回精度✅⭐较高⭐中等偏低
适用场景精准问答、事实匹配模糊搜索、意图理解

附:专业术语对照表

专业名词解释
RAGRetrieval-Augmented Generation,检索增强生成
离散索引基于关键词、实体等离散特征构建的检索索引
向量索引 / 连续索引使用语义向量模型构建的索引,捕捉深层语义
TF-IDF基于词频与逆文档频率的关键词提取算法
TextRank基于图的关键词提取方法
命名实体识别(NER)提取文本中人名、地点、组织等命名实体
SpaCy / BERT-NER常用的实体识别工具或模型
Ensemble Retriever用于融合多种检索结果的策略模块
Small-to-Big先检索小内容后链接大内容的检索策略
OpenAI AdaOpenAI 提供的文本嵌入模型
智源 BGE北京智源研究院开源的中文嵌入模型
多路召回多模型或多策略并行召回的机制
上下文补充为大模型提供语境信息以生成更优答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值