MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。
原文链接:(https://blog.csdn.net/yeruby/article/details/38615045)
下面用图和代码来解释:
我们首先定义一个数组:lowcost[i];我们初始将V1作为起点,那么lowcost[2] = 6,lowcost[3] = 1,lowcost[4] = 5,lowcost[5] = inf,lowcost[6] = inf;(其中inf=0x7ffffff,i指的是以i为终点的路径的长度,若没有一步可达的路径那么就赋值为inf)
我们明显可以看出,以V3为终点的路径最短那么就将V3加入集合V中,lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4,
将lowcost[3]标记为0,说明V3已经加入到集合V中了。 同时在这里更新以V3为起点所能直接到达的点的最短路。
此时,因为点V6的加入,需要更新lowcost数组
lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0
明显看出,以V4为终点的边的权值最小=2
此时,因为点V4的加入,需要更新lowcost数组:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0
重复执行直到所有点都加入集合V;
#include<iostream>
#define Max_cost 0x7fffffff
#define maxn 101
using namespace std;
int G[maxn][maxn];
int n,m;
void Prime(){
int path[maxn];
int lowcost[maxn];
for(int i = 2;i<=n;i++){
lowcost[i] = G[1][i];
path[i] = 1;
}
//刚开始的时候让1当做起点;
int _min,_minid,sum = 0;
for(int i = 2;i<=n;i++){
_min = Max_cost;
_minid = 0;
for(int j = 2;j<=n;j++){
if(lowcost[j]<_min&&lowcost[j]!=0){
_min = lowcost[j];
_minid = j;
}
}
sum+=_min;
lowcost[_minid] = 0;
cout<<path[_minid]<<"->"<<_minid<<"="<<_min<<endl;
for(int j = 2;j<=n;j++){
if(G[_minid][j]<lowcost[j]){
lowcost[j] = G[_minid][j];
path[j] = _minid;
}
}
}
cout<<sum;
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i = 1;i<=n;i++){
for(int j = 1;j<=n;j++){
G[i][j] = Max_cost;
}
}
int x,y,z;
for(int i = 1;i<=m;i++){
cin>>x>>y>>z;
G[x][y] = z;
G[y][x] = z;
}
Prime();
}