习题6.1确认Logistic分布属于指数分布族。

解答:
解答思路:

  1. 列出Logistic分布的定义
  2. 列出指数分布族的定义
  3. 通过指数倾斜,证明Logistic分布的分布函数无法表示成指数分布族的分布函数形式
    解答步骤:
    第1步: Logistic分布的定义
    根据书中第91页的Logistic分布:
    X X X 是连续随机变量, X X X 服从Logistic分布是指 X X X 具有下列分布函数和密度函数:
    F ( x ) = P ( X ⩽ x ) = 1 1 + e − ( x − μ ) / γ f ( x ) = F ′ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 \begin{gathered} F(x)=P(X \leqslant x)=\frac{1}{1+\mathrm{e}^{-(x-\mu) / \gamma}} \\ f(x)=F^{\prime}(x)=\frac{\mathrm{e}^{-(x-\mu) / \gamma}}{\gamma\left(1+\mathrm{e}^{-(x-\mu) / \gamma}\right)^2} \end{gathered} F(x)=P(Xx)=1+e(xμ)/γ1f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ
    式中, μ \mu μ 为位置参数, γ > 0 \gamma>0 γ>0 为形状参数。
    第2步:指数分布族的定义
    参考指数分布族的Wikipedia: https://en.wikipedia.org/wiki/Exponential family. 对于随机变量 x x x ,在给定参数 θ \theta θ 下,其概率分别满足如下形式:
    f ( x ∣ θ ) = h ( x ) g ( θ ) exp ⁡ ( η ( θ ) ⋅ T ( x ) ) f(x \mid \theta)=h(x) g(\theta) \exp (\eta(\theta) \cdot T(x)) f(xθ)=h(x)g(θ)exp(η(θ)T(x))
    称之为指数分布族。
    其中: g ( θ ) g(\theta) g(θ) 表示归一化系数, h ( x ) > 0 h(x)>0 h(x)>0
  • 注: 这里我们将通过替换 η ( θ ) \eta(\theta) η(θ) 来构造反例分布
    第3步: 证明Logistic分布的分布函数无法表示成指数分布族的分布函数形式
    根据指数分布族的Wikipedia: https://en.wikipedia.org/wiki/Exponential family.
    Other examples of distributions that are not exponential families are the F-distribution, Cauchy distribution, hypergeometric distribution and logistic distribution
    可知,Logistic分布不属于指数分布族
    证明思路:
    参考: https://stats.stackexchange.com/questions/275773/does-logistic-distribution-belongs-to-exponential-family.
  1. γ = 1 \gamma=1 γ=1 ,可得单参数的Logistic分布;
  2. 计算当 μ = 0 \mu=0 μ=0 时,函数 f ( x ∣ μ = 0 ) f(x \mid \mu=0) f(xμ=0)
  3. 根据Logistic分布的MGF (矩生成函数),可得 E ( e θ x ) E\left(\mathrm{e}^{\theta x}\right) E(eθx)
  4. 根据指数倾斜的定义,证明单参数 θ \theta θ 的指数倾斜密度函数无法表示成Logistic分布的密度函数形式;可证得,Logistic分布不属于指数分布族;
    证明步骤:
  5. 单参数Logistic分布:
    γ = 1 \gamma=1 γ=1 ,则单参数 μ \mu μ 的Logistic分布:
    f ( x ∣ μ ) = e − ( x − μ ) ( 1 + e − ( x − μ ) ) 2 f(x \mid \mu)=\frac{\mathrm{e}^{-(x-\mu)}}{\left(1+\mathrm{e}^{-(x-\mu)}\right)^2} f(xμ)=(1+e(xμ))2e(xμ)
  6. 计算 f ( x ∣ μ = 0 ) f(x \mid \mu=0) f(xμ=0)
  7. Logistic分布的MGF矩生成函数
    根据Logistic分布的Wikipedia: https://en.wikipedia.org/wiki/Logistic distribution
    Logistic的MGF矩生成函数 M X ( θ ) M_X(\theta) MX(θ) :
    M X ( θ ) = e μ t B ( 1 − s t , 1 + s t ) M_X(\theta)=\mathrm{e}^{\mu t} B(1-s t, 1+s t) MX(θ)=eμtB(1st,1+st)
    其中 t ∈ ( − 1 / s , 1 / s ) , B t \in(-1 / s, 1 / s) , B t(1/s,1/s)B 表示Beta函数。
    可知,当 μ = 0 , s = 1 \mu=0, s=1 μ=0,s=1 时,
    M X ( θ ) = E ( e θ x ) = B ( 1 − θ , 1 + θ ) , θ ∈ ( − 1 , 1 ) M_X(\theta)=E\left(\mathrm{e}^{\theta x}\right)=B(1-\theta, 1+\theta), \quad \theta \in(-1,1) MX(θ)=E(eθx)=B(1θ,1+θ),θ(1,1)
  8. 证明单参数 θ \theta θ 的指数倾斜密度函数无法表示成Logistic分布的形式
    根据指数倾斜的Wikipedia: https://en.wikipedia.org/wiki/Exponential tilting
    给定一个随机变量 X X X ,其概率分布为 P P P ,概率密度为 f f f 和矩生成函数(MGF)为 M X ( θ ) = E ( e θ x ) M_X(\theta)=E\left(e^{\theta x}\right) MX(θ)=E(eθx) ,指数倾斜 P θ P_\theta Pθ 定义如下:
    P θ ( X ∈ d x ) = E [ e θ X I ( X ∈ d x ) ] M X ( θ ) = e θ x − k ( θ ) P ( X ∈ d x ) P_\theta(X \in d x)=\frac{E\left[\mathrm{e}^{\theta X} I(X \in d x)\right]}{M_X(\theta)}=\mathrm{e}^{\theta x-k(\theta)} P(X \in d x) Pθ(Xdx)=MX(θ)E[eθXI(Xdx)]=eθxk(θ)P(Xdx)
    其中, k ( θ ) k(\theta) k(θ) 表示为累积生成函数 (CGF),即 log ⁡ E ( e θ X ) \log E\left(\mathrm{e}^{\theta X}\right) logE(eθX) ,称 P θ ( X ∈ d x ) = f θ ( x ) P_\theta(X \in d x)=f_\theta(x) Pθ(Xdx)=fθ(x) 为随机变量 X X X θ \theta θ-tilted密度分布。
    综上,我们将使用 M X ( θ ) M_X(\theta) MX(θ) 替换 η ( θ ) \eta(\theta) η(θ) ,可知
    f θ ( x ) = e θ x − k ( θ ) f 0 ( x ) f_\theta(x)=\mathrm{e}^{\theta x-k(\theta)} f_0(x) fθ(x)=eθxk(θ)f0(x)
    其中, k ( θ ) = log ⁡ M X ( θ ) = B ( 1 − θ , 1 + θ ) , θ ∈ ( − 1 , 1 ) k(\theta)=\log M_X(\theta)=B(1-\theta, 1+\theta), \quad \theta \in(-1,1) k(θ)=logMX(θ)=B(1θ,1+θ),θ(1,1) ,根据指数倾斜性质, f θ ( x ) f_\theta(x) fθ(x) 无法表示Logistic分布的密度函数形式。 所以,Logistic分布不属于指数分布族。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值