点击上方“大数据与人工智能”,“星标或置顶公众号”
第一时间获取好内容
作者丨stephenDC
这是作者的第10篇文章
在《Pattern Recognition and Machine Learning》一书的第2章第4节,作者Bishop对指数分布族进行了非常全面系统的讲解。
本文绝大部分都可以看做是原文的直接翻译,部分加入了自己的思考,有些公式推导可能与原文略有不同。本人自认不能写的更好,因此手头有这本书的读者朋友,建议去看原文。
我们为什么要研究指数分布族呢?
主要有两个原因:一是因为指数分布族所包含的各种概率分布非常常用;二是指数分布族具有很好的性质,非常好用。
下文先给出指数分布族的定义,然后举出指数分布族的三个常见的实例,最后说明指数分布族的极大似然估计、充分统计量、共轭先验和无信息先验等性质。
指数分布族的定义
三个实例
下面我们证明,伯努利分布,多项式分布和高斯分布,都可以写成以上定义的形式。
极大似然估计
充分统计量
(点击上图可跳转去阅读《极大似然估计、极大后验估计和贝叶斯估计》原文)
共轭先验
无信息先验
小结
读到这里,不妨思考一个问题,指数分布族为什么要这样定义?
篇幅有限,有兴趣的同学,欢迎评论区交流。
-end-
相关阅读