指数分布族

点击上方“大数据与人工智能”,“星标或置顶公众号”

第一时间获取好内容

640?wx_fmt=gif

640?wx_fmt=png


作者丨stephenDC

这是作者的第10篇文章



在《Pattern Recognition and Machine Learning》一书的第2章第4节,作者Bishop对指数分布族进行了非常全面系统的讲解。


本文绝大部分都可以看做是原文的直接翻译,部分加入了自己的思考,有些公式推导可能与原文略有不同。本人自认不能写的更好,因此手头有这本书的读者朋友,建议去看原文。

 

我们为什么要研究指数分布族呢?


主要有两个原因:一是因为指数分布族所包含的各种概率分布非常常用;二是指数分布族具有很好的性质,非常好用


下文先给出指数分布族的定义,然后举出指数分布族的三个常见的实例,最后说明指数分布族的极大似然估计、充分统计量、共轭先验和无信息先验等性质。



  • 指数分布族的定义


640?wx_fmt=png



  • 三个实例


下面我们证明,伯努利分布,多项式分布和高斯分布,都可以写成以上定义的形式。


640?wx_fmt=png


640?wx_fmt=png

640?wx_fmt=png


640?wx_fmt=png

640?wx_fmt=png

 


  • 极大似然估计


640?wx_fmt=png


640?wx_fmt=png



  • 充分统计量


640?wx_fmt=png

 点击上图可跳转去阅读《极大似然估计、极大后验估计和贝叶斯估计》原文)


  • 共轭先验


640?wx_fmt=png

 


  • 无信息先验


640?wx_fmt=png


640?wx_fmt=png


640?wx_fmt=png

640?wx_fmt=png


 


640?wx_fmt=png

小结

640?wx_fmt=png


读到这里,不妨思考一个问题,指数分布族为什么要这样定义?

篇幅有限,有兴趣的同学,欢迎评论区交流。



-end-

 



相关阅读

在线抽奖活动中如何实现中奖概率的自适应调整  

罗素的理发师和奥卡姆剃刀

机器学习中的维度灾难

集成学习之如何由弱变强

极大似然估计、极大后验估计和贝叶斯估计

稀疏核机(上)—SVM回顾

稀疏核机(中)-核方法

稀疏核机(下)—稀疏性

机器学习中常用的几个概率不等式及证明


640?wx_fmt=png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值