【算法证明 二】快速排序的时间复杂度分析

快速排序是一种分治算法。选取主元后,将数组使用 partition 算法根据主元分割成两半,再对两半分别进行排序。假设左半边数量为 q q q,则右半边数量为 n − q − 1 n-q-1 nq1。则由如下递归式,得到如下运行时间递归式:
T ( n ) = T ( q ) + T ( n − q − 1 ) + Θ ( n ) T(n)=T(q)+T(n-q-1) + \Theta(n) T(n)=T(q)+T(nq1)+Θ(n)

最坏时间复杂度

最坏情况下的复杂度显然是
T ( n ) = max ⁡ 0 ≤ q ≤ n − 1 ( T ( q ) + T ( n − q − 1 ) ) + Θ ( n ) T(n)=\max_{0\le q\le n-1}(T(q)+T(n-q-1)) + \Theta(n) T(n)=0qn1max(T(q)+T(nq1))+Θ(n)

这里使用代入法(数学归纳法)证明:假设 T ( n ) ≤ c n 2 T(n) \le cn^2 T(n)cn2 成立,代入等式右侧,原式有
T ( n ) ≤ c ⋅ max ⁡ 0 ≤ q ≤ n − 1 ( q 2 + ( n − q − 1 ) 2 ) + Θ ( n ) T(n) \le c\cdot \max_{0\le q\le n-1}(q^2+(n-q-1)^2) + \Theta(n) T(n)c0qn1max(q2+(nq1)2)+Θ(n)
容易得到, q 2 + ( n − q − 1 ) 2 q^2+(n-q-1)^2 q2+(nq1)2 在端点取得最大值。因此: q 2 + ( n − q − 1 ) 2 ≤ ( n − 1 ) 2 = n 2 − 2 n + 1 q^2+(n-q-1)^2\le(n-1)^2=n^2-2n+1 q2+(nq1)2(n1)2=n22n+1,即

T ( n ) ≤ c ( n 2 − 2 n + 1 ) + Θ ( n ) ≤ c n 2 T(n) \le c(n^2-2n+1) + \Theta(n)\le cn^2 T(n)c(n22n+1)+Θ(n)cn2
得到上界为 O ( n 2 ) O(n^2) O(n2)
同理,假设 T ( n ) ≥ c n 2 T(n) \ge cn^2 T(n)cn2,使用数学归纳法也可以证明 T ( n ) = Ω ( n 2 ) T(n)=\Omega(n^2) T(n)=Ω(n2),因此最坏时间复杂度是 Θ ( n 2 ) \Theta(n^2) Θ(n2)

期望时间复杂度

通过分析算法代码,可以知道,快速排序的操作主要为

  1. partition 操作数量
  2. partition 内部循环

对于1,易得其 ≤ n \le n n。对于 2,主要看其内部循环中的比较数量 X X X。因此,算法的时间可以表示为 O ( n + X ) O(n+X) O(n+X)。其中 n n n 在这里不重要,凑数用的。
如何计算快排的平均比较次数,即 E ( X ) E(X) E(X)?
X i j X_{ij} Xij i i i j j j 是否进行了比较,比较为 1, 没比较为 0 。因为在快速排序中,两个元素之间最多比较一次(因为元素只与主元比较,而主元不参与后序的递归过程)。因此, X = ∑ i = 1 n − 1 ∑ j = i + 1 n X i j X= \sum_ {i=1} ^{n-1} \sum_{j=i+1}^n X_{ij} X=i=1n1j=i+1nXij
对其取期望,得
E ( X ) = ∑ i = 1 n − 1 ∑ j = i + 1 n E ( X i j ) = ∑ i = 1 n − 1 ∑ j = i + 1 n P i j , P i j 表示 i j 发生比较的概率 E(X)= \sum_ {i=1} ^{n-1} \sum_{j=i+1}^n E(X_{ij})= \sum_ {i=1} ^{n-1} \sum_{j=i+1}^n P_{ij}, P_{ij} 表示 i j 发生比较的概率 E(X)=i=1n1j=i+1nE(Xij)=i=1n1j=i+1nPij,Pij表示ij发生比较的概率

为方便叙述,设 Z Z Z 为原数组集合的重命名, Z = { z 1 , z 2 , . . . , z n } Z= \{z_1, z_2, ... , z_n\} Z={z1,z2,...,zn},其中 z i z_i zi 表示数组中第 i i i 大值( Z Z Z 就是原数组排序后重命名一下)。
如何求 i j i j ij 发生比较的概率 P i j P_{ij} Pij 呢?从反向入手,什么时候 z i z j z_iz_j zizj 不会发生比较呢?显然当 z i z j z_iz_j zizj 之间的某一个 z x z_x zx 先被选为主元之后, z i z j z_iz_j zizj 被分开了,所以后序的排序过程也一定不会发生比较。如果 z i z_i zi 或者 z j z_j zj 先被选为元素呢?那么 z i z j z_iz_j zizj 会发生比较。如果在 [ z i , z j ] [z_i,z_j] [zi,zj] 以外的元素被选为主元呢?这并不重要。我们只关心 [ z i , z j ] [z_i, z_j] [zi,zj] 中的数,谁先被选为主元。

因此, P i j P_{ij} Pij 的计算大大致就清楚了,其等于 [ z i , z j ] [z_i, z_j] [zi,zj] 中, i , j i, j i,j 先被选为主元的概率,即
P i j = 1 j − i + 1 + 1 j − i + 1 = 2 j − i + 1 P_{ij}=\frac{1}{j-i+1}+\frac{1}{j-i+1} = \frac{2}{j-i+1} Pij=ji+11+ji+11=ji+12

代入原公式得
E ( X ) = = ∑ i = 1 n − 1 ∑ j = i + 1 n 2 j − i + 1 E(X)== \sum_ {i=1} ^{n-1} \sum_{j=i+1}^n \frac{2}{j-i+1} E(X)==i=1n1j=i+1nji+12

j − i j-i ji 代换为 k k k
E ( X ) = ∑ i = 1 n − 1 ∑ k = 1 n − i 2 k + 1 < ∑ i = 1 n − 1 ∑ k = 1 n − i 2 k = ∑ i = 1 n − 1 O ( l g n ) = O ( n l g n ) E(X)= \sum_ {i=1} ^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}<\sum_ {i=1} ^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}=\sum_ {i=1} ^{n-1}O(lgn)=O(nlgn) E(X)=i=1n1k=1nik+12<i=1n1k=1nik2=i=1n1O(lgn)=O(nlgn)

再基于比较排序的下界,可知,快速排序的期望复杂度是 Θ ( n l g n ) \Theta(nlgn) Θ(nlgn)

证明完毕。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本书是国际算法大师乌迪·曼博(Udi Manber)博士撰写的一本享有盛誉的著作。全书共分12章:第1章到第4章为介绍性内容,涉及数学归纳法、算法分析、数据结构等内容;第5章提出了与归纳证明进行类比的算法设计思想;第6章到第9章分别给出了4个领域的算法,如序列和集合的算法、图算法、几何算法、代数和数值算法;第10章涉及归约,也是第11章的序幕,而后者涉及NP完全问题;第12章则介绍了并行算法;最后是部分习题的答案及参考文献。本书的特色有,旨在提高读者的问题求解能力,使读者能够理解算法设计的过程和思想:一是强调算法设计的创造性过程,注重算法设计背后的创造性思想,而不拘泥于某个具体算法的详细讨论;是将算法设计类比于定理归纳证明,揭示了算法设计的基本思想和本质。 本书的组织结构清晰且易于理解,强调了创造性,具有浓郁特色,时至今日仍有其巨大的价值,并且适合作为计算机及相关专业算法和高级算法课程的教材。 第1章 引论 第2章 数学归纳法 2.1 引言 2.2 三个简单的例子 2.3 平面内区域的计数 2.4 简单的着色问题 2.5 复杂一些的加法题 2.6 一个简单的不等式 2.7 欧拉公式 2.8 图论中的一个问题 2.9 格雷码 2.10 在图上寻找无重边的路 2.11 数学平均数和几何平均数定理 2.12 循环不变量:将十进制数转换为进制数 2.13 常见的错误 2.14 小结 第3章 算法分析 3.1 引言 3.2 符号O 3.3 时间与空间复杂度 3.4 求和 3.5 递推关系 3.5.1 巧妙地猜测 3.5.2 分治关系 3.5.3 涉及全部历史的递推关系 3.6 一些有用的证明论据 3.7 小结 第4章 数据结构简介 4.1 引言 4.2 基本数据结构 4.2.1 元素 4.2.2 数组 4.2.3 记录 4.2.4 链表 4.3 树 4.3.1 树的表示 4.3.2 堆 4.3.3 叉搜索树 4.3.4 AVL树 4.4 散列 4.5 合并?查找问题 4.6 图 4.7 小结 第5章 基于归纳的算法设计 5.1 引言 5.2 多项式求值 5.3 最大导出子图 5.4 寻找一对一映射 5.5 社会名流问题 5.6 分治算法:轮廓问题 5.7 在叉树中计算平衡因子 5.8 寻找最大连续子序列 5.9 增强归纳假设 5.10 动态规划:背包问题 5.11 常见的错误 5.12 小结 第6章 序列和集合的算法 6.1 引言 6.2 叉搜索的几种形式 6.2.1 纯叉搜索 6.2.2 循环序列的叉搜索 6.2.3 叉搜索特殊下标 6.2.4 叉搜索长度未知的序列 6.2.5 重叠子序列问题 6.2.6 解方程 6.3 内插搜索 6.4 排序 6.4.1 桶排序和基数排序 6.4.2 插入排序和选择排序 6.4.3 归并排序 6.4.4 快速排序 6.4.5 堆排序 6.4.6 排序问题的下界 6.5 顺序统计 6.5.1 最大数和最小数 6.5.2 查找第k小的数 6.6 数据压缩 6.7 串匹配 6.8 序列比较 6.9 概率算法 6.9.1 随机数 6.9.2 着色问题 6.9.3 将拉斯维加斯算法变换成确定性算法 6.10 查找众数 6.11 三个展现有趣证明方法的问题 6.11.1 最长递增序列 6.11.2 查找集合中两个最大的元素 6.11.3 计算多重集合的模 6.12 小结 第7章 图算法 7.1 引言 7.2 欧拉图 7.3 图的遍历 7.3.1 深度优先搜索 7.3.2 广度优先搜索 7.4 拓扑排序 7.5 单源最短路径 7.6 最小代价生成树 7.7 全部最短路径 7.8 传递闭包 7.9 图的分解 7.9.1 双连通分支 7.9.2 强连通分支 7.9.3 利用图分解的例子 7.10 匹配 7.10.1 非常稠密图中的完美匹配 7.10.2 偶图匹配 7.11 网络流量 7.12 哈密尔顿旅行 7.12.1 反向归纳 7.12.2 在非常稠密图中找哈密尔顿回路 7.13 小结 第8章 几何算法 8.1 引言 8.2 判定点是否在多边形内部 8.3 构造简单多边形 8.4 凸包 8.4.1 直接方法 8.4.2 礼品包裹算法 8.4.3 Graham扫描算法 8.5 最近点对 8.6 水平线段和竖直线段的交点 8.7 小结 第9章 代数和数值算法 9.1 引言 9.2 求幂运算 9.3 欧几里得算法 9.4 多项式乘法 9.5 矩阵乘法 9.5.1 Winograd算法 9.5.2 Strassen算法 9.5.3 布尔矩阵 9.6 快速傅里叶变换 9.7 小结 第10章 归约 10.1 引言 10.2 归约的例子 10.2.1 简单字符串匹配问题 10.2.2 特殊代表集 10.2.3 关于序列比较的归约 10.2.4 在无向图中寻找三角形 10.3 有关线性规划的归约 10.3.1 概述与定义 10.3.2 归约到线性规划的例子 10.4 下界的归约 10.4.1 寻找简单多边形算法复杂度的下界 10.4.2 关于矩阵的简单归约 10.5 常见的错误 10.6 小结 第11章 NP完全问题 11.1 引言 11.2 多项式时间归约 11.3 非确定性和Cook定理 11.4 NP完全性的证明例子 11.4.1 顶点覆盖问题 11.4.2 支配集问题 11.4.3 3SAT问题 11.4.4 团问题 11.4.5 3着色问题 11.4.6 一般经验 11.4.7 更多的NP完全问题 11.5 处理NP完全问题的技术 11.5.1 回溯法和分枝限界法 11.5.2 确保性能的近似算法 11.6 小结 第12章 并行算法 12.1 引言 12.2 并行计算模型 12.3 共享存储器算法 12.3.1 并行加 12.3.2 寻找最大数的算法 12.3.3 并行前缀问题 12.3.4 在链表中查寻秩 12.3.5 欧拉遍历技术 12.4 互连网络上的算法 12.4.1 阵列上的排序 12.4.2 排序网络 12.4.3 在树中查找第k个最小元素 12.4.4 网孔上的矩阵乘法 12.4.5 超立方体中的路由 12.5 脉动计算 12.5.1 矩阵与向量相乘 12.5.2 卷积问题 12.5.3 序列的比较 12.6 小结 部分习题答案 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值