强化学习&蒙特卡洛3.6 | 通过episode更新Q表

本文探讨了在强化学习中如何利用episode更新Q表。通过介绍更新Q值的公式,解释了如何计算差值,并指出随着episode数量增加,Q值的变化会逐渐减小。为解决这一问题,引入了步长α来调整更新权重,使得后期的回报更能影响Q值估算。伪代码展示了具体的更新过程。
摘要由CSDN通过智能技术生成

经过每一个episode,我们可以对Q表中的动作状态值进行更新,采取的公式如下
在这里插入图片描述
假设当前有4个相同状态和动作的episode,计算Q值得过程如下
在这里插入图片描述
完善我们公式后,发现更新的差值就是过去得到回报与当前回报相减,然后再乘以总体episode数量的倒数
在这里插入图片描述
但是随着episode的增多,导致分母N变得很大,变化会变得越来越小,导致变化可以忽略不计
在这里插入图片描述
我们将除以平均值得做法替换为步长α࿰

Q-learning和SARSA都属于时序差分强化学习方法,而不是蒙特卡洛强化学习方法。 时序差分强化学习是一种结合了动态规划和蒙特卡洛方法的强化学习方法。它通过使用经验数据进行增量式的更新,同时利用了当前和未来的估计值来逼近最优值函数。 具体来说,Q-learning和SARSA都是基于Q值函数的时序差分强化学习算法。 1. Q-learning:Q-learning是一种基于动态规划的无模型强化学习算法。它使用了时序差分(TD)方法,通过不断迭代更新Q值函数的估计值,使其逼近最优的Q值。Q-learning算法通过将当前状态和动作的估计值与下一个状态和动作的最大估计值相结合,来更新Q值函数的估计值。 2. SARSA:SARSA是一种基于时序差分的强化学习算法,也是一种模型-free的强化学习算法。SARSA算法使用了时序差分的方法,通过不断迭代更新Q值函数的估计值。与Q-learning不同的是,SARSA算法采用了一个策略(Policy)来决定下一个动作,并在更新Q值时使用下一个动作的估计值。 时序差分强化学习方法与蒙特卡洛强化学习方法相比,具有更高的效率和更好的适应性。它可以在每个时间步骤中进行更新,不需要等到任务结束后才进行更新,从而更快地收敛到最优策略。而蒙特卡洛强化学习方法则需要等到任务结束后才能获取完整的回报信息,进行全局更新
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ASKCOS

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值