强化学习&蒙特卡洛3.6 | 通过episode更新Q表

本文探讨了在强化学习中如何利用episode更新Q表。通过介绍更新Q值的公式,解释了如何计算差值,并指出随着episode数量增加,Q值的变化会逐渐减小。为解决这一问题,引入了步长α来调整更新权重,使得后期的回报更能影响Q值估算。伪代码展示了具体的更新过程。
摘要由CSDN通过智能技术生成

经过每一个episode,我们可以对Q表中的动作状态值进行更新,采取的公式如下
在这里插入图片描述
假设当前有4个相同状态和动作的episode,计算Q值得过程如下
在这里插入图片描述
完善我们公式后,发现更新的差值就是过去得到回报与当前回报相减,然后再乘以总体episode数量的倒数
在这里插入图片描述
但是随着episode的增多,导致分母N变得很大,变化会变得越来越小,导致变化可以忽略不计
在这里插入图片描述
我们将除以平均值得做法替换为步长α࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ASKCOS

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值