经过每一个episode,我们可以对Q表中的动作状态值进行更新,采取的公式如下
假设当前有4个相同状态和动作的episode,计算Q值得过程如下
完善我们公式后,发现更新的差值就是过去得到回报与当前回报相减,然后再乘以总体episode数量的倒数
但是随着episode的增多,导致分母N变得很大,变化会变得越来越小,导致变化可以忽略不计
我们将除以平均值得做法替换为步长α
强化学习&蒙特卡洛3.6 | 通过episode更新Q表
最新推荐文章于 2024-10-06 10:57:42 发布
本文探讨了在强化学习中如何利用episode更新Q表。通过介绍更新Q值的公式,解释了如何计算差值,并指出随着episode数量增加,Q值的变化会逐渐减小。为解决这一问题,引入了步长α来调整更新权重,使得后期的回报更能影响Q值估算。伪代码展示了具体的更新过程。
摘要由CSDN通过智能技术生成